- Article
- Published:
Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors
Naturevolume 403, pages274–280 (2000)Cite this article
2275Accesses
6Altmetric
Abstract
GABAA (γ-aminobutyric-acid A) and dopamine D1 and D5 receptors represent two structurally and functionally divergent families of neurotransmitter receptors. The former comprises a class of multi-subunit ligand-gated channels mediating fast interneuronal synaptic transmission, whereas the latter belongs to the seven-transmembrane-domain single-polypeptide receptor superfamily that exerts its biological effects, including the modulation of GABAA receptor function, through the activation of second-messenger signalling cascades by G proteins. Here we show that GABAA-ligand-gated channels complex selectively with D5 receptors through the direct binding of the D5 carboxy-terminal domain with the second intracellular loop of the GABAA γ2(short) receptor subunit. This physical association enables mutually inhibitory functional interactions between these receptor systems. The data highlight a previously unknown signal transduction mechanism whereby subtype-selective G-protein-coupled receptors dynamically regulate synaptic strength independently of classically defined second-messenger systems, and provide a heuristic framework in which to view these receptor systems in the maintenance of psychomotor disease states.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Dohlman, H. G., Thorner, J., Caron, M. G. & Lefkowitz, R. J. Model systems for the study of seven transmembrane segment receptors. Annu. Rev. Biochem.60, 653–688 (1991).
Unwin, N. Neurotransmitter action: opening of ligand gated ion channels. Cell72 (suppl.), 653–688 (1991).
Neer, E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell80, 249–257 ( 1995).
McDonald, R. L. & Olsen, R. W. GABAA receptor channels.Annu. Rev. Neurosci.17, 569–602 (1994).
Mody, I., DeKoninck, Y., Otis, T. S. & Soltesz, I. Bridging the cleft at GABA synapses in the brain.Trends Neurosci.17, 517–525 ( 1994).
Barnard, E. et al. Subtypes of GABAA receptors: classification on the basis of subunit structure and receptor function.Pharmacol. Rev.50, 291–313 ( 1998).
Costa, E. From GABA receptor diversity emerges a unified vision of GABAergic inhibition.Annu. Rev. Pharmacol. Toxicol.38, 321– 350 (1998).
McKernan, R. M. & Whiting, P. J. Which GABA A receptor subtypes really occur in the brain?Trends Neurosci.19, 139–143 ( 1996).
Tretter, V., Ehya, N., Fuchs, K. & Sieghart, W. Stoichiometry and assembly of a recombinant GABAA receptor subtype. J. Neurosci.17, 2728–2737 (1997).
Missale, C., Nash, S. R., Robinson, S. W., Jaber, M. & Caron, M. G. Dopamine receptors: from structure to function.Physiol. Rev.78, 189– 225 (1998).
Sunahara, R. K. et al. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5.Nature347, 80– 83 (1990).
Sunahara, R. K. et al. Cloning of a gene for a human dopamine D5 receptor with higher affinity for dopamine than D1.Nature350, 614–619 (1991).
Niznik, H. B., Sugamori, K. S., Clifford, J. J. & Waddington, J. L. inHandbook of Experimental Pharmacology—Dopamine in the CNS. (ed. Di Chiara, G.) (Springer, Berlin, in the press).
Sidhu, A. Coupling of D1 and D5 dopamine receptors to multiple G proteins. Mol. Neurobiol.16, 125–134 (1998).
Sibley, D. R. New insights into dopaminergic function using anti-sense and genetically altered animals.Annu. Rev. Pharmacol. Toxicol.39, 313–341 (1999).
Smart, T. G. Regulation of excitatory and inhibitory neurotransmitter-gated ion channels by protein phosphorylation.Curr. Opin. Neurobiol. 7, 358–367 (1997).
Poisbeau, P., Cheney, M. C., Browning, M. D. & Mody, I. Modulation of synaptic GABAA receptor function by PKA and PKC in adult hippocampal neurons.J. Neurosci.19, 674–683 (1999).
Swope, S. L., Moss, S. I., Raymond, L. A. & Huganir, R. L. Regulation of ligand gated ion channels by protein phosphorylation. Adv. Second Messenger Phosphoprot. Res.33, 49– 78 (1999).
Yan, Z. & Surmeier, D. J. D5 dopamine receptors enhance Zn2+ sensitive GABAA currents in striatal cholinergic interneurons through a PKA/PP1 cascade.Neuron19, 1115–1126 (1997).
Radnikow, G. & Misgeld, U. Dopamine D1 receptors facilitate GABAA synaptic currents in the rat subtantia nigra pars reticulata.J. Neurosci.18, 2009– 2016 (1998).
Moniyama, T. & Sim, J. A. Modulation of inhibitory transmission by dopamine in rat basal forebrain nuclei: activation of presynaptic D1 like dopaminergic receptors.J. Neurosci.16, 7502–7512 (1996).
Brunig, I., Sommer, M., Hatt, H. & Bormann, J. Dopamine receptor subtypes modulate olfactory bulb γ-aminobutyric acid type A receptors.Proc. Natl Acad. Sci. USA96, 2456– 2460 (1999).
Bergson, C. et al. Regional cellular and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain.J. Neurosci.15, 7821–7836 ( 1995).
Buhl, E. H., Halasy, K. & Somogyi, P. Diverse sources of hippocampal unitary inhibitory postsynaptic potentials and the number of postsynaptic release sites.Nature368, 823–828 ( 1994).
Nusser, Z., Roberts, J. D. B., Baude, A., Richards, J. G. & Somogyi, P. Immunocytochemical localization of α1 and β2/3 subunits of the GABAA receptor in relation to specific GABAergic synapses in the dendate gyrus.Eur. J. Neurosci.7, 630–636 ( 1995).
Hall, R. A., Premont, R. T. & Lefkowitz, R. J. Heptahelical receptor signalling: beyond the G-protein paradigm.J. Cell Biol.145, 927– 932 (1999).
Sperk, G., Schwarzer, C., Tsunashima, K., Fuchs, K. & Sieghart, W. GABAA receptor subunits in the rat hippocampus: I. Immunocytochemical distribution of 13 subunits.Neuroscience80, 987–1000 (1997).
Essrich, C., Lorez, M., Berson, J. A., Fritschy, J.-M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin.Nature Neurosci.1, 563–571 ( 1998).
Wang, H., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature397, 69–72 ( 1999).
Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurons and fibroblasts. J. Neurosci.17, 6587–6596 (1997).
Wan, Q. et al. Modulation of GABAA receptor function by tyrosine phosphorylation of β subunits.J. Neurosci.17, 5062–5069 (1997).
Luttrell, L. M., Ostrowski, J., Cotecchia, S., Kendall, H. & Lefkowitz, R. J. Antagonism of catecholamine receptor signaling by expression of cytoplasmic domains of the receptors.Science259, 1453–1557 (1993).
Sugamori, K. S., Scheideler, M. A., Vernier, P. & Niznik, H. B. Dopamine D1B receptor chimeras reveal modulation of partial agonist activity by carboxyl terminal tail sequences.J. Neurochem. 71, 2593–2599 (1998).
McDonald, B. J. et al. Adjacent phosphorylation sites on GABAA receptor β-subunits determine regulation by cAMP-dependent protein kinase.Nature Neurosci.1, 23–28 (1998 ).
Hebert, T. E. & Bouvier, M. Structural and functional aspects of GPCR oligomerization.Biochem. Cell Biol.76, 1–11 (1998).
Marshall, F. H., Jones, K. A., Kaupmann, K. & Bettler, B. GABAA receptors—the first 7TM heterodimers.Trends Pharmacol. Sci.10, 369–399 (1999).
Jordan, B. A. & Devi, L. A. G-protein coupled receptor heterodimerization modulates receptor function.Nature399, 697–700 (1999).
Benes, F. M. The role of stress and dopamine-GABA interactions in the vulnerability for schizophrenia.J. Psychiat. Res.31, 257 –275 (1997).
Huntsman, M. M., Tran, B.-V., Potkin, S. G., Bunney, W. E. Jr & Jones, E. G. Altered ratios of alternatively spliced long and short γ2 subunit mRNAs of the GABA A receptor in prefrontal cortex of schizophrenics.Proc. Natl Acad. Sci. USA95, 15066–15071 (1998).
Keverne, E. B. GABA-ergic neurons and the neurobiology of schizophrenia and other psychosis.Brain Res. Bull.48, 467– 473 (1999).
Okubo, Y.et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET.Nature385, 634– 636 (1997).
Goldman-Rakic, P. S. & Selemon, L. D. Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizo. Bull.23, 437–458 (1997).
Moore, H. West, A. R. & Grace, A. A. The regulation of forebrain dopamine transmission.Biol. Psychiat.46, 40– 55 (1999).
Ng, G. Y. K. et al. Agonist induced desensitization of dopamine D1 receptor stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization.Proc. Natl Acad. Sci. USA 92, 10157–10161 (1995).
Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory synapse.Nature395, 172– 177 (1998).
Wan, Q. et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin.Nature388, 686– 690 (1997).
Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin deficient mice.J. Neurosci.19, 9289–9297 (1999).
Hall, R. A. et al. The β2 adrenergic receptor interactions with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange.Nature 392, 626–630 (1998).
Yu, X.-M. & Salter, M. W. Gain control of NMDA receptor currents by intracellular sodium.Nature396, 469–474 (1998).
Acknowledgements
We thank J. Braunton, K. M. Zhu and H. Y. Man for technical assistance. This work was supported by grants from NIDA, the Ontario Mental Health Foundation (H.B.N.) and the MRC of Canada (H.B.N., X.M.Y., Y.T.W.). F.L. was supported by a C. Cleghorn Fellowship in Schizophrenia Research and is a fellow of the Canadian Psychiatric Research Foundation; Z.B.P. is a NARSAD Young Investigator. X.M.Y. is an MRC Scholar and Y.T.W. is a Research Scholar of the Heart and Stroke Foundation of Canada. H.B.N. was supported in part by the C.B. Ireland Endowed Fund for Psychiatric Research.
Author information
Authors and Affiliations
Department of Psychiatry,
Fang Liu, Zdenek B. Pristupa, Xian-Min Yu & Hyman B. Niznik
Department of Pharmacology,
Hyman B. Niznik
Department of Oral Physiology,
Xian-Min Yu
Institute of Medical Sciences, University of Toronto, Toronto, M5S-1A8, Ontario, Canada
Fang Liu & Hyman B. Niznik
Program in Brain and Behavior and Division of Pathology, Hospital for Sick Children, Toronto, M5G 1X8, Ontario, Canada
Qi Wan & Yu Tian Wang
Molecular Neurobiology Section, Center for Addiction and Mental Health, Toronto, M5T 1R8, Ontario, Canada
Fang Liu, Zdenek B. Pristupa, Xian-Min Yu & Hyman B. Niznik
- Fang Liu
You can also search for this author inPubMed Google Scholar
- Qi Wan
You can also search for this author inPubMed Google Scholar
- Zdenek B. Pristupa
You can also search for this author inPubMed Google Scholar
- Xian-Min Yu
You can also search for this author inPubMed Google Scholar
- Yu Tian Wang
You can also search for this author inPubMed Google Scholar
- Hyman B. Niznik
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toHyman B. Niznik.
Rights and permissions
About this article
Cite this article
Liu, F., Wan, Q., Pristupa, Z.et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors.Nature403, 274–280 (2000). https://doi.org/10.1038/35002014
Received:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Converging synaptic and network dysfunctions in distinct autoimmune encephalitis
- Daniel Hunter
- Mar Petit-Pedrol
- Laurent Groc
EMBO Reports (2024)
A synaptomic analysis reveals dopamine hub synapses in the mouse striatum
- Vincent Paget-Blanc
- Marlene E. Pfeffer
- Etienne Herzog
Nature Communications (2022)
Electrophysiology of ionotropic GABA receptors
- Erwan Sallard
- Diane Letourneur
- Pascal Legendre
Cellular and Molecular Life Sciences (2021)
The voltage-gated potassium channel Shaker promotes sleep via thermosensitive GABA transmission
- Ji-hyung Kim
- Yoonhee Ki
- Chunghun Lim
Communications Biology (2020)
Adenosine heteroreceptor complexes in the basal ganglia are implicated in Parkinson’s disease and its treatment
- Dasiel O. Borroto-Escuela
- Kjell Fuxe
Journal of Neural Transmission (2019)