Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Letter
  • Published:

The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor

Naturevolume 335pages358–360 (1988)Cite this article

Abstract

The recent cloning of the complementary DNAs and/or genes for several receptors linked to guanine nucleotide regulatory proteins including the adrenergic receptors (α1, α2A, α2B, β1, β2)1–7 several subtypes of the muscarinic cholinergic receptors8,9, and the visual 'receptor' rhodopsin10 has revealed considerable similarity in the primary structure of these proteins. In addition, all of these proteins contain seven putative transmembrane α-helices. We have previously described a genomic clone, G-21, isolated by cross-hybridization at reduced stringency with a full length β2- adrenergic receptor probe11. This clone contains an intronless gene which, because of its striking sequence resemblance to the adrenergic receptors, is presumed to encode a G-protein-coupled receptor. Previous attempts to identify this putative receptor by expression studies have failed. We now report that the protein product of the genomic clone, G21, transiently expressed in monkey kidney cells has all the typical ligand-binding characteristics of the 5-hydroxytryptamine (5-HT1A) receptor.

This is a preview of subscription content,access via your institution

Access options

Access through your institution

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Dixon, R. A. F.et al.Nature321, 75–79 (1986).

    Article ADS CAS  Google Scholar 

  2. Yarden, Y.et al.Proc. natn. Acad. Sci. U.S.A.83, 6795–6799 (1986).

    Article ADS CAS  Google Scholar 

  3. Kobilka, B. K.et al.Proc. natn. Acad. Sci. U.S.A.84, 46–50 (1987).

    Article ADS CAS  Google Scholar 

  4. Frielle, T.et al.Proc. natn. Acad. Sci. U.S.A.84, 7920–7924 (1987).

    Article ADS CAS  Google Scholar 

  5. Kobilka, B. K.et al.Science238, 650–656 (1987).

    Article ADS CAS  Google Scholar 

  6. Cotecchia S.et al.Proc. natn. Acad. Sci. U.S.A. (in the press).

  7. Regan, J. W.et al.Proc. natn. Acad. Sci. U.S.A. (in the press).

  8. Kubo, T.et al.Nature323, 411–416 (1986).

    Article ADS CAS  Google Scholar 

  9. Kubo, T.et al.FEBS Lett.209, 367–372 (1986).

    Article CAS  Google Scholar 

  10. Nathans, J. & Hogness, D. S.Proc. natn. Acad. Sci. U.S.A.81, 4851–4855 (1984).

    Article ADS CAS  Google Scholar 

  11. Kobilka, B. K.et al.Nature329, 75–79 (1987).

    Article ADS CAS  Google Scholar 

  12. Bradley, P. B.et al.Neuropharmacol.25, 563–575 (1987).

    Article  Google Scholar 

  13. Göthert, M. & Schlicker, E.J. Cardiovasc. Pharmacol10(suppl. 10), S3–S7 (1987).

    Article  Google Scholar 

  14. Peroutka, S. J.ISI Atlas of Sei.: Pharmac.2, 1–4 (1988).

    CAS  Google Scholar 

  15. Leysen, J. E.Neuromethods, Neuropharmacology II: Drugs as Tools in Neurotransmilter Research (eds Boulton, A. A., Baker, G. B. & Jourio, A. V.) (Humana, Clifton, in press).

  16. Cullen, B. R.Meth. Enzym.152, 684–704 (1987).

    Article CAS  Google Scholar 

  17. Hoyer, D., Engel, G. & Kalkman, H. O.Eur. J. Pharmac.118, 1–12 (1985).

    Article CAS  Google Scholar 

  18. Hoyer, D., Engel, G. & Kalkman, H. O.Eur. J. Pharmac.118, 13–23 (1985).

    Article CAS  Google Scholar 

  19. Gozlan, H., Mestikawy, S., Pichat, L., Glowinsky, G. & Hamon, M.Nature305, 140–142 (1983).

    Article ADS CAS  Google Scholar 

  20. Sills, M. A., Wolfe, B. B. & Frazer, A.Molec. Pharmac.26, 10–18 (1984).

    CAS  Google Scholar 

  21. Hall, M. D.et al.J. Neurochem.44, 1685–1696 (1985).

    Article CAS  Google Scholar 

  22. Schlegel, J. R. & Peroutka, S. J.Biochem. Pharmac.35, 1943–1949 (1986).

    Article CAS  Google Scholar 

  23. Shenker, A.et al.Eur. J. Pharmac.109, 427–429 (1985).

    Article CAS  Google Scholar 

  24. Markstein, R., Hoyer, D. & Engel, G.Naunyn-Schmiedebergs Archs Pharmak.333, 335–341 (1986).

    Article CAS  Google Scholar 

  25. Weiss, S., Sebben, M., Kempe, D. & Bockaert, J.Eur. J. Pharmacol.120, 227–230 (1986).

    Article CAS  Google Scholar 

  26. De Vivo, M. & Maayani, S.J. Pharmac. exp. The.238, 248–253 (1986).

    CAS  Google Scholar 

  27. Bockaert, J. A.et al.Naunyn-Schmiedebergs Arch. Pharmak.335, 588–592 (1987).

    Article CAS  Google Scholar 

  28. Colino, A. & Halliwell, J. V.Nature328, 73–77 (1987).

    Article ADS CAS  Google Scholar 

  29. Andrade, R. & Nicoll, R. A.J. Physiol., Lond.394, 99–124 (1987).

    Article CAS  Google Scholar 

  30. Kobilka, B. K.et al.Science240, 1310–1316 (1988).

    Article ADS CAS  Google Scholar 

  31. Sternberg, E. M., Wedner, J. H., Leung, M. K. & Parker, C. W.J. lmmun.138, 4360–4365 (1987).

    CAS  Google Scholar 

  32. Hellstrand, K. & Hermodsson, S.J. Immun.139, 869–875 (1987).

    CAS PubMed  Google Scholar 

  33. DeLean, A., Hancock, A. A. & Lefkowitz, R. J.Molec. Pharmac.21, 5–16 (1982).

    CAS  Google Scholar 

  34. Chirgwin, J. M., Przybyla, A. E., McDonald, R. J. & Rutter, W. J.Biochemistry18, 5294–5299 (1979).

    Article CAS  Google Scholar 

  35. McMaster, G. K. & Carmichael, G. C.Proc. natn. Acad. Sci. U.S.A.74, 4835–4838 (1977).

    Article ADS CAS  Google Scholar 

  36. Azis, N. & Munro, H. N.Nucleic Acids Res.14, 915–927 (1986).

    Article  Google Scholar 

  37. Gozlan, H.et al.J. Receptor Res.7, 195–221 (1987).

    Article CAS  Google Scholar 

  38. Julius, D.et al.Science241, 558–564 (1988).

    Article ADS CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Howard Hughes Medical Institute Laboratories: Departments of Medicine (Cardiology) and Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA

    Annick Fargin, John R. Raymond, Martin J. Lohse, Brian K. Kobilka, Marc G. Caron & Robert J. Lefkowitz

  2. Howard Hughes Medical Institute Laboratories: Department of Medicine (Nephrology), Duke University Medical Center, Durham, North Carolina, 27710, USA

    John R. Raymond

  3. Howard Hughes Medical Institute Laboratories: Departments of Cell Biology, Duke University Medical Center, Durham, North Carolina, 27710, USA

    Marc G. Caron

Authors
  1. Annick Fargin

    You can also search for this author inPubMed Google Scholar

  2. John R. Raymond

    You can also search for this author inPubMed Google Scholar

  3. Martin J. Lohse

    You can also search for this author inPubMed Google Scholar

  4. Brian K. Kobilka

    You can also search for this author inPubMed Google Scholar

  5. Marc G. Caron

    You can also search for this author inPubMed Google Scholar

  6. Robert J. Lefkowitz

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Fargin, A., Raymond, J., Lohse, M.et al. The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor.Nature335, 358–360 (1988). https://doi.org/10.1038/335358a0

Download citation

This article is cited by

Access through your institution
Buy or subscribe

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp