- Letter
- Published:
A cyclic nucleotide-gated conductance in olfactory receptor cilia
Naturevolume 325, pages442–444 (1987)Cite this article
2096Accesses
1079Citations
6Altmetric
Abstract
Olfactory transduction is thought to be initiated by the binding of odorants to specific receptor proteins in the cilia of olfactory receptor cells (reviewed in refs1–3). The mechanism by which odorant binding could initiate membrane depolarization is unknown, but the recent discovery of an odorant-stimulated adenylate cyclase in purified olfactory cilia4,5 suggests that cyclic AMP may serve as an intracellular messenger for olfactory transduction. If so, then there might be a conductance in the ciliary plasma membrane which is controlled by cAMP. Here we report that excised patches of ciliary plasma membrane, obtained from dissociated receptor cells, contain a conductance which is gated directly by cAMP. This conductance resembles the cyclic GMP-gated conductance that mediates phototransduction in rod and cone outer segments6,7, but differs in that it is activated by both cAMP and cGMP. Our data provide a mechanistic basis by which an odorant-stimulated increase in cyclic nucleotide concentration could lead to an increase in membrane conductance and therefore, to membrane depolarization. These data suggest a remarkable similarity between the mechanisms of olfactory and visual transduction and indicate considerable conservation of sensory transduction mechanisms.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rhein, L. D. & Cagan, R. H. inBiochemistry of Taste and Olfaction (eds Cagan, R. H. & Kare, M. R.) 47–65 (Academic, New York, 1981).
Getchell, T. V.Physiol. Rev.66, 772–818 (1986).
Lancet, D.A. Rev. Neurosci.9, 329–355 (1986).
Pace, U., Hanski, E., Salomon, Y. & Lancet, D.Nature316, 255–258 (1985).
Sklar, P. B., Anholt, R. H. & Snyder, S. H.J. biol. Chem.261, 15538–15543 (1986).
Fesenko, E. E., Kolesnikov, S. S. & Lyubarsky, A. L.Nature313, 310–313 (1985).
Haynes, L. W. & Yau, K.-W.Nature317, 61–64 (1985).
Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F.Pflügers Arch. ges. Physiol.391, 85–100 (1981).
Reese, T. S.J. Cell Biol.25, 209–230 (1965).
Corey, D. P. & Stevens, C. F. inSingle Channel Recording (eds Sakmann, B. & Neher, E.) 53–68 (Plenum, New York, 1983).
Sakmann, B. & Neher, E. inSingle Channel Recording (eds Sakmann, B. & Neher, E.) 37–51 (Plenum, New York, 1983).
Matthews, G.Soc. Neurosci. Abstr.11, 1130 (1985).
Yau, K.-W. & Haynes, L. W.Biophys. J.49, 33a (1986).
Haynes, L. W., Kay, A. R. & Yau, K.-W.Nature321, 66–70 (1986).
Zimmerman, A. L. & Baylor, D. A.Nature321, 70–72 (1986).
Trotier, D. & MacLeod, P.Brain Res.268, 225–237 (1983).
Suzuki, N. inFood Intake and Chemical Senses (eds Katsuki, Y., Sato, M., Takagi, S. F. & Oomura, Y.) 13–22 (University of Tokyo Press, 1977).
Anderson, P. A. V. & Hamilton, K. A.Neuroscience (in the press).
Getchell, T. V., Heck, G. L. & DeSimone, J. A.Biophys. J.29, 397–412 (1980).
Getchell, T. V. & Shepherd, G. M.J. Physiol., Lond.282, 541–560 (1978).
Masukawa, L. M., Hedlund, B. & Shepherd, G. M.J. Neurosci.5, 136–141 (1985).
Takagi, S. F. inHandbook, of Sensory Physiology Vol.4 (ed. Beidler, L. M.) 75–94 (Springer, New York, 1971).
Rhein, L. D. & Cagan, R. H.Proc. natn. Acad. Sci. U.S.A.77, 4412–4416 (1980).
Adamek, G. D., Gesteland, R. C., Mair, R. G. & Oakley, B.Brain Res.310, 87–97 (1984).
Huque, T. & Bruch, R. C.Biochem. biophys. Res. Commun.137, 36–42 (1986).
Sklar, P. B., Anholt, R. R. H. & Snyder, S. H.J. Neurosci. Abstr.12, 1178 (1986).
Vodyanoy, V. & Murphy, R. B.Science220, 717–719 (1983).
Fesenko, E. E., Novoselov, V. I., Pervukin, G. Y. & Fesenko, N. K.Biochim. biophys. Acta466, 347–356 (1977).
Vinnikov, J. A.Cold Spring Harb. Symp. quant. Biol.30, 293–300 (1965).
Jencks, W. P. inChemical Recognition in Biology (eds Chapeville, F. & Haenni, A.-L.) 3–25 (Springer, New York, 1980).
Graziadei, P. P. C. inHandbook of Sensory Physiology Vol.4 (ed. Beidler, L. M.) 27–58 (Springer, New York, 1971).
Author information
Authors and Affiliations
Department of Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06510, USA
Tadashi Nakamura & Geoffrey H. Gold
- Tadashi Nakamura
Search author on:PubMed Google Scholar
- Geoffrey H. Gold
Search author on:PubMed Google Scholar
Rights and permissions
About this article
Cite this article
Nakamura, T., Gold, G. A cyclic nucleotide-gated conductance in olfactory receptor cilia.Nature325, 442–444 (1987). https://doi.org/10.1038/325442a0
Received:
Accepted:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
GPRC5C regulates the composition of cilia in the olfactory system
- Sneha Bhat
- André Dietz
- Eva Maria Neuhaus
BMC Biology (2023)
Conformational trajectory of allosteric gating of the human cone photoreceptor cyclic nucleotide-gated channel
- Zhengshan Hu
- Xiangdong Zheng
- Jian Yang
Nature Communications (2023)
Contribution of TRPC3-mediated Ca2+ entry to taste transduction
- Alexander P. Cherkashin
- Olga A. Rogachevskaja
- Stanislav S. Kolesnikov
Pflügers Archiv - European Journal of Physiology (2023)
Neural circuit control of innate behaviors
- Wei Xiao
- Zhuo-Lei Jiao
- Xiao-Hong Xu
Science China Life Sciences (2022)
The cyclic AMP signaling pathway in the rodent main olfactory system
- Anna Boccaccio
- Anna Menini
- Simone Pifferi
Cell and Tissue Research (2021)


