- Article
- Published:
Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution
Naturevolume 395, pages347–353 (1998)Cite this article
13kAccesses
1917Citations
18Altmetric
Abstract
The evolutionarily conserved SNARE proteins and their complexes are involved in the fusion of vesicles with their target membranes; however, the overall organization and structural details of these complexes are unknown. Here we report the X-ray crystal structure at 2.4 Å resolution of a core synaptic fusion complex containing syntaxin-1A, synaptobrevin-II and SNAP-25B. The structure reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins. Conserved leucine-zipper-like layers are found at the centre of the synaptic fusion complex. Embedded within these leucine-zipper layers is an ionic layer consisting of an arginine and three glutamine residues contributed from each of the four α-helices. These residues are highly conserved across the entire SNARE family. The regions flanking the leucine-zipper-like layers contain a hydrophobic core similar to that of more general four-helix-bundle proteins. The surface of the synaptic fusion complex is highly grooved and possesses distinct hydrophilic, hydrophobic and charged regions. These characteristics may be important for membrane fusion and for the binding of regulatory factors affecting neurotransmission.
This is a preview of subscription content,access via your institution
Access options
Subscription info for Japanese customers
We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Südhof, T. The synaptic vesicle cycle: a cascade of protein–protein interactions.Nature375, 645–653 (1995).
Hanson, P. I., Heuser, J. E. & Jahn, R. Neurotransmitter release — four years of SNARE complexes.Curr. Opin. Neurobiol.7, 310–315 (1997).
Jahn, R. & Niemann, H. Molecular mechanisms of clostridial neurotoxins.Ann. NY Acad. Sci.733, 245–255 (1994).
Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. Aprotein assembly-disassembly pathwayin vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.Cell75, 409–418 (1993).
Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complexin vitro.EMBO J.14(10), 2317–2325 (1995).
Fasshauer, D., Otto, H., Eliason, W. K., Jahn, R. & Brunger, A. T. Structural changes are associated with SNARE-complex formation.J. Biol. Chem.242, 28036–28041 (1997).
Nichols, B. J., Ungerman, C., Pelham, H. R. B., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs.Proc. Natl Acad. Sci. USA387, 199–202 (1997).
Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.Proc. Natl Acad. Sci. USA94, 6197–6201 (1997).
Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport.Proc. Natl Acad. Sci. USA85, 7852–7856 (1988).
Hanson, P. I., Otto, H., Barton, N. & Jahn, R. The N-ethylmaleimide-sensitive fusion protein and α-SNAP induce a conformational change in syntaxin.J. Biol. Chem.270, 16955–16961 (1995).
Fasshauer, D., Eliason, W. K., Brunger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE-complex sufficient for reversible assembly and disassembly.Biochemsitry37, 10345–10353 (1998).
Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation.Science254, 51–58 (1991).
Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complex visualized by quick-freeze/deep-etch electron microscopy.Cell90, 523–525 (1997).
Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations.J. Cell. Biol.109, 3039–3052 (1989).
Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. Aswitch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants.Science262, 1401–1407 (1993).
Lupas, A., van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences.Science252, 1162–1164 (1991).
Crick, F. H. C. The packing of α-helices: simple coiled coils.Acta Crystallogr.6, 689–697 (1953).
Wolf, E., Kim, P. S. & Berger, B. MultiCoil: a program for predicting two- and three-stranded coiled coils.Protein Sci.6, 1179–1189 (1997).
Weimbs, T., Mostov, K. E., Low, S. H. & Hofmann, K. Amodel for structural similarity between different SNARE complexes based on sequence relationships.Trends Cell Biol.8, 260–262 (1998).
Hao, J. C., Salem, N., Peng, X. R., Kelly, R. B. & Bennett, M. K. Effect of mutations in vesicle-associated membrane protein (VAMP) on the assembly of multimeric protein complexes.J. Neurosci.17, 1596–1603 (1997).
Saifee, O., Wei, L. & Nonet, M. L. TheCaenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin.Mol. Biol. Cell9, 1235–1239 (1998).
Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brunger, A. T. Astructural change occurs upon binding of syntaxin to SNAP-25.J. Biol. Chem.272, 4582–4590 (1997).
Kee, Y., Lin, R. C., Hsu, S. C. & Scheller, R. H. Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation.Neuron14, 991–998 (1995).
Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly.EMBO J.13, 5051–5061 (1994).
Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces.Nature Struct. Biol.3, 842–848 (1996).
Chan, D. c., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein.Cell89, 263–273 (1997).
Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41.Nature387, 426–430 (1997).
Caffrey, M. et al. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41.EMBO J.17, 4572–4584 (1998).
Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein influenza virus at 3 Å resolution.Nature289, 366–373 (1981).
Rice, L. M., Brennwald, P. & Brunger, A. T. Formation of a yeast SNARE complex is accompanied by significant structural changes.FEBS Lett.415, 49–55 (1997).
Chan, D. C. & Kim, P. S. HIV entry and its inhibition.Cell93, 681–684 (1998).
Bernard, A. & Payton, M. Fermentation and growth ofEscherichia coli for optimal protein production.Curr. Protocol. Protein Sci.5.3, 1–18 (1995).
Leahy, D. J., Erickson, H. P., Aukhil, I., Joshi, P. & Hendrickson, W. A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine.Proteins19, 48–54 (1994).
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode.Methods Enzymol.276, 307–326 (1998).
Brunger, A. T. et al. Crystallography & NMR system (CNS): a new software system for macromolecular structure determination.Acta Crystallogr. D54, 905–921 (1998).
Bricogne, G. Bayesian statistical viewpoint on structure determination: basic concepts and examples.Methods Enzymol.276, 361–423 (1997).
Phillips, J. C. & Hodgson, K. O. The use of anomalous scattering effects to phase diffraction patterns from macromolecules.Acta Crystallogr. A36, 856–864 (1980).
Burling, F. T., Weis, W. I., Flaherty, K. M. & Brunger, A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases.Science271, 72–77 (1996).
Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography.Methods Enzymol.115, 90–112 (1985).
Zhang, K. Y. J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules.Acta Crystallogr. A46, 41–46 (1990).
Jones, T. A., Zou, J. Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr. A47, 110–119 (1991).
Rice, L. M. & Brunger, A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.Proteins19, 277–290 (1994).
Hendrickson, W. A. Stereochemically restrained refinement of macromolecular structures.Methods Enzymol.115, 252–270 (1985).
Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. Incorporation of prior phase information strengthens maximum likelihood structural refinement.Acta Crystallogr. D(in the press).
Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors.Acta Crystallogr. A42, 140–149 (1986).
Brunger, A. T. The freeR value: a novel statistical quantity for assessing the accuracy of crystal structures.Nature355, 472–474 (1992).
Read, R. J. Model phases: probabilities and bias.Methods Enzymol.277, 110–128 (1997).
Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons.Proteins11, 281–296 (1991).
Esnouf, M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities.J. Mol. Graph. Model15, 132–134 (1997).
Jorgensen, W. L. & Rives, J. T. The OPLS potential functions for protein energy minimizations for crystals of cyclic peptide and crambin.J. Am. Chem. Soc.110, 1657–1666 (1988).
Malashkevich, V. N., Chan, D. C., Chutkowski, C. T. & Kim, P. Crystal structure of the simian immunodeficiency virus (SIV) gp41core: Conserved helical interactions underlie the broad inhibitory activity of gp41peptides.Proc. Natl Acad. Sci. USA95, 9134–9139 (1998).
Acknowledgements
We thank P. D. Adams and C. Ostermeier for advice; D. M. Engelman, K. M. Fiebig, T. Simonson and R. C. Yu for stimulating discussions; H. Bellamy for assistance with data collection at SSRL 1-5 (SSRL is funded by the Department of Energy; the SSRL Biotechnology Program is supported by the NIH; further SSRL support is provided by the Department of Energy); A. Joachimiak and staff at the Structural Biology Center at the Advanced Photon Source for assistance with data collection at 19ID (this national user facility is supported by the Department of Energy); L. Esser for assistance in figure preparation; and J. Pflugrath for help with d*TREK. This work was supported by the NIH (A.T.B.).
Author information
Authors and Affiliations
The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 06520, Connecticut, USA
R. Bryan Sutton & Axel T. Brunger
Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, D-37077, Germany
Dirk Fasshauer & Reinhard Jahn
- R. Bryan Sutton
You can also search for this author inPubMed Google Scholar
- Dirk Fasshauer
You can also search for this author inPubMed Google Scholar
- Reinhard Jahn
You can also search for this author inPubMed Google Scholar
- Axel T. Brunger
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toAxel T. Brunger.
Supplementary Information
Rights and permissions
About this article
Cite this article
Sutton, R., Fasshauer, D., Jahn, R.et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution.Nature395, 347–353 (1998). https://doi.org/10.1038/26412
Received:
Accepted:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
This article is cited by
Expanding the genetic and phenotypic spectrum of congenital myasthenic syndrome: new homozygous VAMP1 splicing variants in 2 novel individuals
- Francisco Javier Cotrina-Vinagre
- María Elena Rodríguez-García
- Francisco Martínez-Azorín
Journal of Human Genetics (2024)
Mechanisms of SNARE proteins in membrane fusion
- Reinhard Jahn
- David C. Cafiso
- Lukas K. Tamm
Nature Reviews Molecular Cell Biology (2024)
Identification of residues critical for the extension of Munc18-1 domain 3a
- Xianping Wang
- Jihong Gong
- Cong Ma
BMC Biology (2023)
VAMP726 and VAMP725 regulate vesicle secretion and pollen tube growth in Arabidopsis
- Xinyan Liu
- Dandan Zhu
- Yan Li
Plant Cell Reports (2023)
SNARER: new molecular descriptors for SNARE proteins classification
- Alessia Auriemma Citarella
- Luigi Di Biasi
- Genoveffa Tortora
BMC Bioinformatics (2022)