Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • Article
  • Published:

Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution

Naturevolume 395pages347–353 (1998)Cite this article

Abstract

The evolutionarily conserved SNARE proteins and their complexes are involved in the fusion of vesicles with their target membranes; however, the overall organization and structural details of these complexes are unknown. Here we report the X-ray crystal structure at 2.4 Å resolution of a core synaptic fusion complex containing syntaxin-1A, synaptobrevin-II and SNAP-25B. The structure reveals a highly twisted and parallel four-helix bundle that differs from the bundles described for the haemagglutinin and HIV/SIV gp41 membrane-fusion proteins. Conserved leucine-zipper-like layers are found at the centre of the synaptic fusion complex. Embedded within these leucine-zipper layers is an ionic layer consisting of an arginine and three glutamine residues contributed from each of the four α-helices. These residues are highly conserved across the entire SNARE family. The regions flanking the leucine-zipper-like layers contain a hydrophobic core similar to that of more general four-helix-bundle proteins. The surface of the synaptic fusion complex is highly grooved and possesses distinct hydrophilic, hydrophobic and charged regions. These characteristics may be important for membrane fusion and for the binding of regulatory factors affecting neurotransmission.

This is a preview of subscription content,access via your institution

Access options

Subscription info for Japanese customers

We have a dedicated website for our Japanese customers. Please go tonatureasia.com to subscribe to this journal.

Buy this article

  • Purchase on SpringerLink
  • Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electron-density map of the synaptic fusion complex obtained by multi-MAD phasing, showing a methionine cluster.
Figure 2: Topology and organization of the synaptic fusion complex.
Figure 3: Ionic ‘0’ layer of the synaptic fusion complex.
Figure 4: Close-up view of the loop involving Sn2 at the C-terminal end of the synaptic fusion complex.
Figure 5: Hypothetical model of the synaptic fusion complex as it joins two membranes, and location of neurotoxin-mediated cleavage sites.
Figure 6: Surface plot showing the electrostatic potential of the synaptic fusion complex.

Similar content being viewed by others

References

  1. Südhof, T. The synaptic vesicle cycle: a cascade of protein–protein interactions.Nature375, 645–653 (1995).

    Article ADS PubMed  Google Scholar 

  2. Hanson, P. I., Heuser, J. E. & Jahn, R. Neurotransmitter release — four years of SNARE complexes.Curr. Opin. Neurobiol.7, 310–315 (1997).

    Article CAS PubMed  Google Scholar 

  3. Jahn, R. & Niemann, H. Molecular mechanisms of clostridial neurotoxins.Ann. NY Acad. Sci.733, 245–255 (1994).

    Article ADS CAS PubMed  Google Scholar 

  4. Söllner, T., Bennett, M. K., Whiteheart, S. W., Scheller, R. H. & Rothman, J. E. Aprotein assembly-disassembly pathwayin vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion.Cell75, 409–418 (1993).

    Article PubMed  Google Scholar 

  5. Hayashi, T., Yamasaki, S., Nauenburg, S., Binz, T. & Niemann, H. Disassembly of the reconstituted synaptic vesicle membrane fusion complexin vitro.EMBO J.14(10), 2317–2325 (1995).

    Article PubMed Central  Google Scholar 

  6. Fasshauer, D., Otto, H., Eliason, W. K., Jahn, R. & Brunger, A. T. Structural changes are associated with SNARE-complex formation.J. Biol. Chem.242, 28036–28041 (1997).

    Article  Google Scholar 

  7. Nichols, B. J., Ungerman, C., Pelham, H. R. B., Wickner, W. T. & Haas, A. Homotypic vacuolar fusion mediated by t- and v-SNAREs.Proc. Natl Acad. Sci. USA387, 199–202 (1997).

    CAS  Google Scholar 

  8. Otto, H., Hanson, P. I. & Jahn, R. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles.Proc. Natl Acad. Sci. USA94, 6197–6201 (1997).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  9. Block, M. R., Glick, B. S., Wilcox, C. A., Wieland, F. T. & Rothman, J. E. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport.Proc. Natl Acad. Sci. USA85, 7852–7856 (1988).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

  10. Hanson, P. I., Otto, H., Barton, N. & Jahn, R. The N-ethylmaleimide-sensitive fusion protein and α-SNAP induce a conformational change in syntaxin.J. Biol. Chem.270, 16955–16961 (1995).

    Article CAS PubMed  Google Scholar 

  11. Fasshauer, D., Eliason, W. K., Brunger, A. T. & Jahn, R. Identification of a minimal core of the synaptic SNARE-complex sufficient for reversible assembly and disassembly.Biochemsitry37, 10345–10353 (1998).

    Article  Google Scholar 

  12. Hendrickson, W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation.Science254, 51–58 (1991).

    Article ADS CAS PubMed  Google Scholar 

  13. Hanson, P. I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J. E. Structure and conformational changes in NSF and its membrane receptor complex visualized by quick-freeze/deep-etch electron microscopy.Cell90, 523–525 (1997).

    Article CAS PubMed  Google Scholar 

  14. Oyler, G. A. et al. The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations.J. Cell. Biol.109, 3039–3052 (1989).

    Article CAS PubMed  Google Scholar 

  15. Harbury, P. B., Zhang, T., Kim, P. S. & Alber, T. Aswitch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants.Science262, 1401–1407 (1993).

    Article ADS CAS PubMed  Google Scholar 

  16. Lupas, A., van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences.Science252, 1162–1164 (1991).

    Article ADS CAS PubMed  Google Scholar 

  17. Crick, F. H. C. The packing of α-helices: simple coiled coils.Acta Crystallogr.6, 689–697 (1953).

    Article CAS  Google Scholar 

  18. Wolf, E., Kim, P. S. & Berger, B. MultiCoil: a program for predicting two- and three-stranded coiled coils.Protein Sci.6, 1179–1189 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Weimbs, T., Mostov, K. E., Low, S. H. & Hofmann, K. Amodel for structural similarity between different SNARE complexes based on sequence relationships.Trends Cell Biol.8, 260–262 (1998).

    Article CAS PubMed  Google Scholar 

  20. Hao, J. C., Salem, N., Peng, X. R., Kelly, R. B. & Bennett, M. K. Effect of mutations in vesicle-associated membrane protein (VAMP) on the assembly of multimeric protein complexes.J. Neurosci.17, 1596–1603 (1997).

    Article CAS PubMed PubMed Central  Google Scholar 

  21. Saifee, O., Wei, L. & Nonet, M. L. TheCaenorhabditis elegans unc-64 locus encodes a syntaxin that interacts genetically with synaptobrevin.Mol. Biol. Cell9, 1235–1239 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  22. Fasshauer, D., Bruns, D., Shen, B., Jahn, R. & Brunger, A. T. Astructural change occurs upon binding of syntaxin to SNAP-25.J. Biol. Chem.272, 4582–4590 (1997).

    Article CAS PubMed  Google Scholar 

  23. Kee, Y., Lin, R. C., Hsu, S. C. & Scheller, R. H. Distinct domains of syntaxin are required for synaptic vesicle fusion complex formation and dissociation.Neuron14, 991–998 (1995).

    Article CAS PubMed  Google Scholar 

  24. Hayashi, T. et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly.EMBO J.13, 5051–5061 (1994).

    Article CAS PubMed PubMed Central  Google Scholar 

  25. Wimley, W. C. & White, S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces.Nature Struct. Biol.3, 842–848 (1996).

    Article CAS PubMed  Google Scholar 

  26. Chan, D. c., Fass, D., Berger, J. M. & Kim, P. S. Core structure of gp41 from the HIV envelope glycoprotein.Cell89, 263–273 (1997).

    Article CAS PubMed  Google Scholar 

  27. Weissenhorn, W., Dessen, A., Harrison, S. C., Skehel, J. J. & Wiley, D. C. Atomic structure of the ectodomain from HIV-1 gp41.Nature387, 426–430 (1997).

    Article ADS CAS PubMed  Google Scholar 

  28. Caffrey, M. et al. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41.EMBO J.17, 4572–4584 (1998).

    Article CAS PubMed PubMed Central  Google Scholar 

  29. Wilson, I. A., Skehel, J. J. & Wiley, D. C. Structure of the haemagglutinin membrane glycoprotein influenza virus at 3 Å resolution.Nature289, 366–373 (1981).

    Article ADS CAS PubMed  Google Scholar 

  30. Rice, L. M., Brennwald, P. & Brunger, A. T. Formation of a yeast SNARE complex is accompanied by significant structural changes.FEBS Lett.415, 49–55 (1997).

    Article CAS PubMed  Google Scholar 

  31. Chan, D. C. & Kim, P. S. HIV entry and its inhibition.Cell93, 681–684 (1998).

    Article CAS PubMed  Google Scholar 

  32. Bernard, A. & Payton, M. Fermentation and growth ofEscherichia coli for optimal protein production.Curr. Protocol. Protein Sci.5.3, 1–18 (1995).

    Google Scholar 

  33. Leahy, D. J., Erickson, H. P., Aukhil, I., Joshi, P. & Hendrickson, W. A. Crystallization of a fragment of human fibronectin: introduction of methionine by site-directed mutagenesis to allow phasing via selenomethionine.Proteins19, 48–54 (1994).

    Article CAS PubMed  Google Scholar 

  34. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode.Methods Enzymol.276, 307–326 (1998).

    Article  Google Scholar 

  35. Brunger, A. T. et al. Crystallography & NMR system (CNS): a new software system for macromolecular structure determination.Acta Crystallogr. D54, 905–921 (1998).

    Article CAS PubMed  Google Scholar 

  36. Bricogne, G. Bayesian statistical viewpoint on structure determination: basic concepts and examples.Methods Enzymol.276, 361–423 (1997).

    Article CAS PubMed  Google Scholar 

  37. Phillips, J. C. & Hodgson, K. O. The use of anomalous scattering effects to phase diffraction patterns from macromolecules.Acta Crystallogr. A36, 856–864 (1980).

    Article ADS  Google Scholar 

  38. Burling, F. T., Weis, W. I., Flaherty, K. M. & Brunger, A. T. Direct observation of protein solvation and discrete disorder with experimental crystallographic phases.Science271, 72–77 (1996).

    Article ADS CAS PubMed  Google Scholar 

  39. Wang, B.-C. Resolution of phase ambiguity in macromolecular crystallography.Methods Enzymol.115, 90–112 (1985).

    Article CAS PubMed  Google Scholar 

  40. Zhang, K. Y. J. & Main, P. Histogram matching as a new density modification technique for phase refinement and extension of protein molecules.Acta Crystallogr. A46, 41–46 (1990).

    Article  Google Scholar 

  41. Jones, T. A., Zou, J. Y., Cowan, S. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models.Acta Crystallogr. A47, 110–119 (1991).

    Article PubMed  Google Scholar 

  42. Rice, L. M. & Brunger, A. T. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.Proteins19, 277–290 (1994).

    Article CAS PubMed  Google Scholar 

  43. Hendrickson, W. A. Stereochemically restrained refinement of macromolecular structures.Methods Enzymol.115, 252–270 (1985).

    Article CAS PubMed  Google Scholar 

  44. Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. Incorporation of prior phase information strengthens maximum likelihood structural refinement.Acta Crystallogr. D(in the press).

  45. Read, R. J. Improved Fourier coefficients for maps using phases from partial structures with errors.Acta Crystallogr. A42, 140–149 (1986).

    Article  Google Scholar 

  46. Brunger, A. T. The freeR value: a novel statistical quantity for assessing the accuracy of crystal structures.Nature355, 472–474 (1992).

    Article ADS CAS PubMed  Google Scholar 

  47. Read, R. J. Model phases: probabilities and bias.Methods Enzymol.277, 110–128 (1997).

    Article CAS PubMed  Google Scholar 

  48. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons.Proteins11, 281–296 (1991).

    Article CAS PubMed  Google Scholar 

  49. Esnouf, M. An extensively modified version of MOLSCRIPT that includes greatly enhanced coloring capabilities.J. Mol. Graph. Model15, 132–134 (1997).

    Article CAS PubMed  Google Scholar 

  50. Jorgensen, W. L. & Rives, J. T. The OPLS potential functions for protein energy minimizations for crystals of cyclic peptide and crambin.J. Am. Chem. Soc.110, 1657–1666 (1988).

    Article CAS PubMed  Google Scholar 

  51. Malashkevich, V. N., Chan, D. C., Chutkowski, C. T. & Kim, P. Crystal structure of the simian immunodeficiency virus (SIV) gp41core: Conserved helical interactions underlie the broad inhibitory activity of gp41peptides.Proc. Natl Acad. Sci. USA95, 9134–9139 (1998).

    Article ADS CAS PubMed PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. D. Adams and C. Ostermeier for advice; D. M. Engelman, K. M. Fiebig, T. Simonson and R. C. Yu for stimulating discussions; H. Bellamy for assistance with data collection at SSRL 1-5 (SSRL is funded by the Department of Energy; the SSRL Biotechnology Program is supported by the NIH; further SSRL support is provided by the Department of Energy); A. Joachimiak and staff at the Structural Biology Center at the Advanced Photon Source for assistance with data collection at 19ID (this national user facility is supported by the Department of Energy); L. Esser for assistance in figure preparation; and J. Pflugrath for help with d*TREK. This work was supported by the NIH (A.T.B.).

Author information

Authors and Affiliations

  1. The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 06520, Connecticut, USA

    R. Bryan Sutton & Axel T. Brunger

  2. Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, D-37077, Germany

    Dirk Fasshauer & Reinhard Jahn

Authors
  1. R. Bryan Sutton

    You can also search for this author inPubMed Google Scholar

  2. Dirk Fasshauer

    You can also search for this author inPubMed Google Scholar

  3. Reinhard Jahn

    You can also search for this author inPubMed Google Scholar

  4. Axel T. Brunger

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAxel T. Brunger.

Rights and permissions

About this article

Cite this article

Sutton, R., Fasshauer, D., Jahn, R.et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution.Nature395, 347–353 (1998). https://doi.org/10.1038/26412

Download citation

This article is cited by

Associated content

SNARE the rod, coil the complex

  • William I. Weis
  • Richard H. Scheller
NatureNews & Views

Advertisement

Search

Advanced search

Quick links

Nature Briefing

Sign up for theNature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox.Sign up for Nature Briefing

[8]ページ先頭

©2009-2025 Movatter.jp