Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Polynomial approximations of multivariate smooth functions from quasi-random data

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

We improve a Monte Carlo algorithm which computes accurate approximations of smooth functions on multidimensional Tchebychef polynomials by using quasi-random sequences. We first show that the convergence of the previous algorithm is twice faster using these sequences. Then, we slightly modify this algorithm to make it work from a single set of random or quasi-random points. This especially leads to a Quasi-Monte Carlo method with an increased rate of convergence for numerical integration.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Atanassov E.I. and Dimov I.T. 1999. A new optimal Monte Carlo method for calculating integral of smooth functions. Monte Carlo Methods and Appl. 5(2): 149–167.

    Google Scholar 

  • Bernardi C. and Maday Y. 1992. Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag.

  • Kalos M.H. and Whitlock P.A. 1986. Monte Carlo Methods. John Wiley & Sons.

  • Krommer A.R. and Ueberhuber A.R. 1998. Computational integration. SIAM.

  • Lapeyre B., Pardoux B., and Sentis B. 1998. Méthodes de Monte-Carlo pour les èquations de transport et de diffusion. Springer-Verlag.

  • Lepage G.P. 1978. A new algorithm for adaptative multidimensional integration. Journal of Computational Physics 27: 192–203.

    Article  Google Scholar 

  • Maire S. 2003a. Reducing variance using iterated control variates. The Journal of Statistical Computation and Simulation 73(1): 1–29.

    Article  Google Scholar 

  • Maire S. 2003b. An iterative computation of approximations on Korobov-like spaces. Journal of Computational and Applied Mathematics 157: 261–281.

    Article  Google Scholar 

  • Niederreiter H. 1987. Point sets and sequences with small discrepancy. Monatsh. Math. 104: 273–337.

    Google Scholar 

  • Niederreiter H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia.

    Google Scholar 

  • Pages G. 1997. A space vector quantization for numerical integration. Journal of Computational and Applied Mathematics 89: 1–38.

    Article  Google Scholar 

  • Sobol I.M. 1967. The distibutions of points in a cube and the approxiamate evaluation of integrals. Zh. Vychisl. Mat. I. Mat. Fiz 784–802.

Download references

Author information

Authors and Affiliations

  1. ISITV, Université de Toulon et du Var, Avenue G, Pompidou BP, 56 - 83262, La Valette du Var, Cedex, France

    Sylvain Maire

Authors
  1. Sylvain Maire

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp