Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Mitochondrial DNA Phylogeography and Comparative Cytogenetics of the Springhare,Pedetes capensis (Mammalia: Rodentia)

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Variation in mitochondrial DNA (mtDNA) was used together with comparative cytogenetics to examine the evolutionary history and taxonomic status of an African hystricomorphous rodent, the springharePedetes capensis. The mtDNA phylogeographic structure showed that the majority of the southern African populations (P. c. capensis) are characterized by unique but closely related maternal lineages. Based on restriction endonuclease fragment analysis, the east African populations (P. c. surdaster) appear more structured and are distinguished from those in southern Africa by an average sequence divergence of 5.52% (±1.4%). This marked divergence is concordant with results of the cytogenetic study. Specimens from southern Africa have 2n = 38, and those from east Africa 2n = 40. The change in diploid number is due to a single centric fusion. It is suggested that the closure of theBrachystegia or “miombo” woodland (20,000–10,000 B.P.), which delimits contemporary springhare ranges, may have been too recent to account for the accumulated genetic differences that distinguish these taxa. While rifting and associated habitat changes in east Africa can be invoked to explain genetic structure in this region, the southern African springhare populations, which have a high incidence of locality-specific haplotypes, show a shallow phylogeographic structure, in keeping with a relatively recent range expansion from smaller source populations. Given the magnitude of genetic, morphological, and ethological differences between the two geographic isolates, we believe that there is strong support for the elevation of the east African and southern African springhare populations to full species status, thus supporting earlier taxonomic treatments of this rodent.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Amos, B., and Hoelzel, A. R. (1991). Long-term preservation of whale skin for DNA analysis.Rep. Int. Whaling Comm. (Spec. Issue)13: 99–104.

    Google Scholar 

  • Avise, J. C. (1989). Gene trees and organismal histories: A phylogenetic approach to population biology.Evolution43: 1192–1208.

    Google Scholar 

  • Avise, J. C. (1994).Molecular Markers, Natural History and Evolution, Chapman and Hall, London and New York.

    Google Scholar 

  • Avise, J. C., and Ball, R. M. (1990). Principles of genealogical concordance in species concepts and biological taxonomy.Oxford Surv. Evol. Biol.7: 45–67.

    Google Scholar 

  • Avise, J. C., Giblin-Davidson, C., Laerm, J., Patton, J. C., and Lansman, R. A. (1979a). Mitochondrial DNA clones and matriarchal phylogeny within and among geographic populations of the pocket gopher,Geomys pinetis.Proc. Natl. Acad. Sci. U.S.A.76: 6694–6698.

    Google Scholar 

  • Avise, J. C., Lansman, R. A., and Shade, R. O. (1979b). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations. I. Population structure and evolution in the genusPeromyscus.Genetics92: 279–295.

    Google Scholar 

  • Avise, J. C., Bowen, B. W., and Lamb, T. (1989). DNA fingerprints from hypervariable mitochondrial genotypes.Mol. Biol. Evol.6: 258–269.

    Google Scholar 

  • Ball, R. M., Freeman, S., James, F. C., Bermingham, E., and Avise, J. C. (1988). Phylogeographic population structure of red-winged blackbirds assessed by mitochondrial DNA.Proc. Natl. Acad. Sci. U.S.A.85: 1558–1562.

    Google Scholar 

  • Brown, L. H., Urban, E. K., and Newman, K. (1982).The Birds of Africa, Vol. 1, Academic Press, London.

    Google Scholar 

  • Brown, W. M. (1980). Polymorphism in mitochondrial DNA of humans.Proc. Natl. Acad. Sci. U.S.A.77: 3605–3609.

    Google Scholar 

  • Brown, W. M. (1983). Evolution of animal mitochondrial DNA. In:Evolution of Genes and Proteins, M. Nei and R. K. Koehn, eds., pp. 63–88, Sinauer, Sunderland.

    Google Scholar 

  • Bush, G. L., Case, S. M., Wilson, A. C., and Patton, J. L. (1977). Rapid speciation and chromosomal evolution in mammals.Proc. Natl. Acad. Sci. U.S.A.74: 3942–3946.

    Google Scholar 

  • Chesser, R. K. (1983). Isolation by distance: relationship to the management of genetic resources. In:Genetics and Conservation, C. M. Schonewald-Cox, S. M. Chambers, B. MacBryde, and L. Thomas, eds., pp. 66–77, Benjamin/Cummings, London.

    Google Scholar 

  • Coe, M. J., and Skinner, J. D. (1993). Connections, disjunctions and endemism in the eastern and southern African mammal faunas.Trans. R. Soc. S. Afr.48: 233–255.

    Google Scholar 

  • Crandall, K. A., and Templeton, A. R. (1993). Empirical tests of some predictions from coalescent theroy with applications to intraspecific phylogeny reconstruction.Genetics134: 959–969.

    Google Scholar 

  • Crandall, K. A., Templeton, A. R., and Sing, C. F. (1994). Intraspecific phylogenetics: problems and solutions. In:Models in Phylogeny Reconstruction, R. W. Scotland, D. J. Siebert, and D. M. Williams, eds., pp. 273–279, Claredon Press, Oxford.

    Google Scholar 

  • Cronin, M. A., Amstrup, S. C., and Garner, G. W. (1991). Interspecific and intraspecific mitochondrial DNA variation in North American bears(Ursus).Can. J. Zool.69: 2985–2992.

    Google Scholar 

  • Da Silva, M. N. F., and Patton, J. L. (1993). Amazonian phylogeography: mtDNA sequence variation in arboreal echimyid rodents (Caviomorpha).Mol. Phyl. Evol.2: 243–255.

    Google Scholar 

  • Davies, C. (1982).The Recent and Fossil Affinities of the Genus Pedetes (Mammalia: Rodentia), Doctor of Philosophy thesis, St. Peter's College, Oxford.

    Google Scholar 

  • Deacon, H. J., and Thackeray, J. F. (1983). Late Pleistocene environmental changes and implications for archaeological records in southern Africa. In:Proceedings of SASQUA International Symposium, J. C. Vogel, ed., pp. 375–390, AA Balkema, Rotterdam.

    Google Scholar 

  • De Graaff, G. (1981). Sciuromorpha. In:The Rodents of Southern Africa, pp. 39–43, Butterworths Press, Durban.

    Google Scholar 

  • Dieterlen, F. (1993). Family Pedetidae. In:Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds., p. 759, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Dowling, T. E., Moritz, C., and Palmer, J. D. (1990). Nucleic acids II: Restriction site analysis. In:Molecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 250–317, Sinauer, Sunderland, MA.

    Google Scholar 

  • Eisenberg, J. F. (1981).The Mammalian Radiations: An Analysis of Trends in Evolution, Adaptation, and Behaviour, Athlone Press, London.

    Google Scholar 

  • Ellerman, J. R., Morrison-Scott, T. C. S., and Hayman, R. W. (1953). Family Pedetidae. In:Southern African Mammals 1758 to 1951: A Reclassification, pp. 251–252, British Museum, London.

    Google Scholar 

  • Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity.Anal. Biochem.132: 6–13.

    Google Scholar 

  • Freitag, S., and Robinson, T. J. (1993). Phylogeographic patterns in the mitochondrial DNA of the ostrich (Struthio camelus).Auk110: 614–622.

    Google Scholar 

  • Hamilton, A. C. (1976). The significance of patterns of distribution shown by forest plants and animals in tropical Africa for the reconstruction of palaeoenvironments: A review.Palaeoecol. Africa9: 63–97.

    Google Scholar 

  • Hamilton, A. C. (1982).Environmental History of East Africa. A Study of the Quaternary, Academic Press, London.

    Google Scholar 

  • Hayes, J. P., and Harrison, R. G. (1992). Variation in mitochondrial DNA and the biogeographic history of woodrats (Neotoma) of the eastern United States.Syst. Biol.41: 331–344.

    Google Scholar 

  • Hillis, D. M., and Huelsenbeck, J. P. (1992). Signal, noise, and reliability in molecular phylogenetic analysis.J. Hered.13: 189–195.

    Google Scholar 

  • Hillis, D. M., and Moritz, C. (eds.) (1990).Molecular Systematics, Sinauer Associates, Sunderland.

    Google Scholar 

  • Hollister, N. (1919). East African mammals in the United States National Museum. II Rodentia, Lagomorpha and Tubulidentata.Bull. U.S. Nat. Mus99: 1–184.

    Google Scholar 

  • Honeycutt, R. L., Edwards, S. V., Nelson, K., and Nevo, E. (1987). Mitochondrial DNA variation and the phylogeny of African mole rats (Rodentia: Bathyergidae).Syst. Zool.36: 280–292.

    Google Scholar 

  • Hsu, T. C., and Benirschke, K. (1977).An Atlas of Mammalian Chromosomes, Vol. 10, Folio 456, Springer-Verlag, New York.

    Google Scholar 

  • Jaarola, M., and Tegelström, H. (1995). Colonization history of north European field voles (Microtus agrestis) revealed by mitochondrial DNA.Mol. Ecol.4: 299–310.

    Google Scholar 

  • King, M. (1993).Species Evolution: The Role of Chromosome Change, Cambridge University Press, Cambridge.

    Google Scholar 

  • Kingdon, J. (1971).East African Mammals: An Atlas of Evolution in Africa, Vol. I, Academic Press, London.

    Google Scholar 

  • Kingdon, J. (1990).Island Africa: The Evolution of Africa's Rare Animals and Plants, Collins, London.

    Google Scholar 

  • Lansman, R. A., Shade, R. O., Shapira, J. F., and Avise, J. C. (1981). The use of restriction endonucleases to measure mitochondrial DNA sequence relatedness in natural populations: III techniques and potential applications.J. Mol. Evol.17: 214–226.

    Google Scholar 

  • Lansman, R., A. Avise, J. C., Aquadro, C. F., Shapira, J. F., and Daniel, S. W. (1983). Extensive genetic variation in mitochondrial DNA's among geographic populations of the deer mouse,Peromyscus maniculatus.Evolution37: 1–16.

    Google Scholar 

  • Luckett, W. P., and Hartenberger, J.-L. (eds.) (1985).Evolutionary Relationships Among Rodents: A Multidisciplinary Analysis. Plenum Press, New York.

    Google Scholar 

  • MacNeil, D., and Strobeck, C. (1987). Evolutionary relationships among colonies of Columbian ground squirrels as shown by mitochondrial DNA.Evolution41: 873–881.

    Google Scholar 

  • Matthee, C. A., and Robinson, T. J. (1996). Mitochondrial DNA differentiation among geographical populations ofPronolagus rupestris, Smith's red rock rabbit (Mammalis: Lagomorpha).Heredity76: 514–523.

    Google Scholar 

  • Matthee, C. A., and Robinson, T. J. (1997). Molecular phylogeny of the springhare,Pedetes capensis, based on mitochondrial DNA sequences.Mol. Biol. Evol.14: 20–29.

    Google Scholar 

  • McKnight, M. L. (1995). Mitochondrial DNA phylogeography ofPerognathus amplus andPerognathus longimembris (Rodentia: Heteromyidae): A possible mammalian ring species.Evolution49: 816–826.

    Google Scholar 

  • McMillan, W. O., and Bermingham, E. (1996). The phylogeographic pattern of mitochondrial DNA variation in the Dall's porpoisePhocoenoides dalli.Mol. Ecol.5: 47–61.

    Google Scholar 

  • Meester, J. A. J., Rautenbach, I. L., Dippenaar, N. J., and Baker, C. M. (1986).Classification of Southern African Mammals, Trans. Mus. Monogr. 5, Pretoria.

  • Misonne, X. (1974). Rodentia. In:The Mammals of Africa: An Identification Manual, J. Meester and H. W. Setzer, eds., p. 8, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Nei, M. (1987). Evolutionary changes of nucleotide sequences. In:Molecular Evolutionary Genetics, pp. 64–110, Columbia University Press, New York.

    Google Scholar 

  • Nei, M., and Miller, J. C. (1990). A simple method for estimating average number of nucleotide substitutions within and between populations from restriction fragment data.Genetics125: 873–879.

    Google Scholar 

  • Nei, M., and Tajima, F. (1981). DNA polymorphism detectable by restriction endonucleases.Genetics97: 145–163.

    Google Scholar 

  • Phillips, C. A. (1994). Geographic distribution of mitochondrial DNA variants and historical biogeography of the spotted salamander.Ambystoma maculatum.Evolution48: 597–607.

    Google Scholar 

  • Plante, Y., Boag, P.T., and White, B. N. (1989). Macrogeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus).Can. J. Zool.67: 158–166.

    Google Scholar 

  • Quennell, A. M. (1982).Rift Valleys, Afro-Arabian, Hutchinson Ross, Philadelphia.

    Google Scholar 

  • Riddle, B. R., and Honeycutt, R. L. (1990). Historical biogeography in north American arid regions: An approach using mitochondrial DNA phylogeny in grasshopper mice (genusOnychomys).Evolution44: 1–15.

    Google Scholar 

  • Roberts, A. (1951). Pedetidae. In:The Mammals of South Africa, R. Bigalke, V. Fitzsimons, and D. E. Malan, eds., pp. 350–352, Trustees of ‘The Mammals of South Africa’ book fund, Johannesburg.

    Google Scholar 

  • Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees.Mol. Biol. Evol.4: 406–425.

    Google Scholar 

  • Slatkin, M. (1987). Gene flow and the geographic structure of natural populations.Science236: 787–792.

    Google Scholar 

  • Smithers, R. H. N. (1968). Family Pedetidae. In:A Check List and Atlas of the Mammals of Botswana, p. 30, Variprint, Salisbury.

    Google Scholar 

  • Smithers, R. H. N. (1983).The Mammals of the Southern African Subregion, University of Pretoria, Pretoria.

    Google Scholar 

  • Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis.J. Mol. Biol.98: 503–517.

    Google Scholar 

  • Sumner, A. T. (1972). A simple technique for demonstrating centromeric heterochromatin.Exp. Cell Res.75: 304–306.

    Google Scholar 

  • Swofford, D. L. (1993).PAUP: Phylogenetic Analysis Using Parsimony, Version 3.1.2d5, Illinois Natural History Survey, Champaign.

    Google Scholar 

  • Thackeray, J. F. (1987). Late Quaternary environmental changes inferred from small mammalian fauna, southern Africa.Climatic Change10: 285–305.

    Google Scholar 

  • Thomas, O. (1902).Pedetes. Ann. Mag. Nat. Hist.7: 440.

    Google Scholar 

  • Verdcourt, B. (1969). The arid corridor between north-east and south-west areas of Africa.Palaeoecol. Africa4: 140–144.

    Google Scholar 

  • Walker, E. P. (1975).Mammals of the World, 3rd. ed., J. L. Paradiso ed., p. 755, John Hopkins University Press, Baltimore.

    Google Scholar 

  • Walton, C. (1984).Reader's Digest Atlas of Southern Africa, J. Bartholomew & Son, Edinburgh.

    Google Scholar 

  • Wilson, A. C., Bush, G. L. Case, S. M., and King, M. (1975). Social structuring of mammalian populations and rate of chromosomal evolution.Proc. Natl. Acad. Sci. U.S.A.72: 5061–5065.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Zoology and Entomology, University of Pretoria, Pretoria, 0002, South Africa

    C. A. Matthee & T. J. Robinson

Authors
  1. C. A. Matthee

    You can also search for this author inPubMed Google Scholar

  2. T. J. Robinson

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Cite this article

Matthee, C.A., Robinson, T.J. Mitochondrial DNA Phylogeography and Comparative Cytogenetics of the Springhare,Pedetes capensis (Mammalia: Rodentia).Journal of Mammalian Evolution4, 53–73 (1997). https://doi.org/10.1023/A:1027331727034

Download citation

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp