222Accesses
3Altmetric
Abstract
Lymphocytes possess an independent, non-neuronal cholinergic system. Moreover, both T- and B-lymphocytes express multiple muscarinic acetylcholine receptors (mAChR). To obtain a better understanding of the regulatory mechanisms governing mAChR gene expression in the lymphocytic cholinergic system, we examined the effects of lymphocyte activation on expression of mAChR mRNA. Stimulation of T- and B-lymphocytes, respectively, with T-cell activator phytohemagglutinin and B-cell activatorStaphylococcus aureus Cowan I upregulated M5 mAChR mRNA expression in the CEM human leukemic T-cell line and in the Daudi B-cell line, which served as models of lymphocytes. In striking contrast, M3 and M4 mAChR mRNA expression was not affected in either cell line. Nonetheless, stimulating lymphocytes with phorbol 12-myristate 13-acetate, a protein kinase C activator, plus ionomycin, a calcium ionophore, upregulated expression of both M3 and M5 mAChR mRNA. This represents the first demonstration that immunological stimulation leads to M5 mAChR gene expression in lymphocytes.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
REFERENCES
Fujii, T., Tajima, S., Yamada, S., Watanabe, Y., Sato, K. Z., Matsui, M., Misawa, H., Fujimoto, K., Kasahara, T., and Kawashima, K. 1999. Constitutive expression of mRNA for the same choline acetyltransferase as that in the nervous system, an acetylcholine-synthesizing enzyme, in human leukemic T-cell lines. Neurosci. Lett. 259:71–74.
Tuček, S. 1982. The synthesis of acetylcholine in skeletal muscles of the rat. J. Physiol. 322:53–69.
Tuček, S. 1988. Choline acetyltransferase and the synthesis of acetylcholine. Pages 125–165, in Whittaker, V. P. (ed), Handbook of Experimental Pharmacology, 86, The Cholinergic Synapse, Springer Verlag, Berlin.
Kawashima, K. and Fujii, T. 2000. Extraneuronal cholinergic system in lymphocytes. Pharmacol. Ther. 86:29–48.
Maslinski, W., Kullberg, M., Nordstrom, O., and Bartfai, T. 1988. Muscarinic receptors and receptor mediated actions on rat thymocytes. J. Neuroimmunol. 17:265–274.
Maslinski, W. 1989. Cholinergic receptors of lymphocytes. Brain Behav. Immunol. 3:1–14.
Fujii, T. and Kawashima, K. 2001. The non-neuronal cholinergic system: An independent, non-neuronal cholinergic system in lymphocytes. Jpn. J. Pharmacol. 85:11–15.
Fujii, T. and Kawashima, K. 2000. Ca2+ oscillation and c-fos gene expression induced via muscarinic acetylcholine receptor stimulation in human leukemic T-and B-cell lines. Naunyn Schmiedebergs Arch.Pharmacol. 362:14–21.
Fujii, T. and Kawashima, K. 2000. Calcium signaling and c-fos gene expression via M3 muscarinic acetylcholine receptors in human T-and B-cells. Jpn. J. Pharmacol. 84:124–132.
Imboden, B. J., Shoback, M. D., Pattison, G., and Stobo, D. J. 1986. Cholera toxin inhibits the T-cell antigen receptor-mediated increases in inositol triphosphate and cytoplasmic free calcium. Proc. Natl. Acad. Sci. USA 83:5673–5677.
Fujii, T., Tsuchiya, T., Yamada, S., Fujimoto, K., Suzuki, T., Kasahara, T., and Kawashima, K. 1996. Localization and synthesis of acetylcholine in human leukemic T cell lines. J. Neurosci. Res. 44:66–72.
Fujii, T., Yamada, S., Watanabe, Y., Misawa, H., Tajima, S., Fujimoto, K., Kasahara, T., and Kawashima, K. 1998. Induction of choline acetyltransferase mRNA in human mononuclear leukocytes stimulated by phytohemagglutinin, a T-cell activator. J. Neuroimmunol. 82:101–107.
Das, T., Sa, G., and Ray, P. K. 1999. Mechanisms of protein A superantigen-induced signal transduction for proliferation of mouse B cell. Immunol. Lett. 70:43–51.
Karray, S., Juompan, L., Maroun, R. C., Isenberg, D., Silverman, G. J., and Zouali, M. 1998. Structural basis of the gp120 superantigen-binding site on human immunoglobulins. J. Immunol. 161:6681–6688.
Dong, G. O., Kameyama, K., Rinken, A., and Haga, T. 1995. Ligand binding properties of muscarinic acetylcholine receptor subtypes (m1-m5) expressed in Baculovirus-infected insect cells. J. Pharmacol. Exp. Ther. 274:378–384.
Dörje, F., Wess, J., Lambrecht, G., Tacke, R., Mutschiler, E., and Brann, M. R. 1991. Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 256:727-733.
Höglund, A. U. and Baghdoyan, H. A. 1997. M2, M3 and M4, but not M1 muscarinic receptor subtypes are present in rat spinal cord. J. Pharmacol. Exp. Ther. 281:470–477.
Waelbroeck, M., Tastenoy, M., Camus, J., and Christophe, J. 1990. Binding of selective antagonists to four muscarinic receptors (M1 to M4) in rat forebrain. Mol. Pharmacol. 38:267–273.
Bonner, T. I., Buckley, N. J., Young, A. C., and Brann, M. R. 1987. Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532.
Bonner, T. I., Young, A. C., Brann, M. R., and Buckley, N. J. 1988. Cloning and expression of the human and rat m5 muscarinic receptor genes. Neuron 1:403–410.
Hulme, E. C., Birdsall, N. J. M., Buckley, N. J. 1990. Muscarinic receptor subtypes. Annu. Rev. Pharmacol Toxicol. 30:633–673.
Bany, U., Ryzewski, J., and Maslinski, W. 1999. Relative amounts of mRNA encoding four subtypes of muscarinic receptors (m2-m5) in human peripheral blood mononuclear cells. J. Neuroimmunol. 97:191–195.
Costa, P., Auger, C. B., Traver, D. J., and Costa, L. G. 1995. Identification of m3, m4 and m5 subtypes of muscarinic receptor mRNA in human blood mononuclear cells. J. Neuroimmunol. 60:45–51.
Fujino, H., Kitamura, Y., Yada, T., Uehara, T., and Nomura, Y. 1997. Stimulatory roles of muscarinic acetylcholine receptors on T cell antigen receptor/CD3 complex-mediated interleukin-2 production in human peripheral blood lymphocytes. Mol. Pharmacol. 51:1007–1014.
Hellström-Lindahl, E. and Nordberg, A. 1996. Muscarinic receptor subtypes in subpopulations of human blood mononuclear cells as analyzed by RT-PCR technique. J. Neuroimmunol. 68:139–144.
Sato, K. Z., Fujii, T., Watanabe, Y., Yamada, S., Ando, T., Fujimoto, K., and Kawashima, K. 1999. Diversity of mRNA for muscarinic acetylcholine receptor subtypes and neuronal acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neurosci. Lett. 266:17–20.
Fujino, H., Uehara, T., Murayama, T., Okuma, Y., Ariga, H., and Nomura, Y. 2000. Extracellular signal regulated protein kinase and c-Jun N-terminal kinase are involved in m1 muscarinic receptor-enhanced interleukin-2 production pathway in Jurkat cells. Biol. Pharm. Bull. 23:1198–1205.
Kaneda, T., Kitamura, Y., and Nomura, Y. 1993. Presence of m3 subtype muscarinic acetylcholine receptors and receptor-mediated increases in the cytoplasmic concentration of Ca2+ in Jurkat, a human leukemic helper T lymphocyte line. Mol. Pharmacol. 43:356–364.
Szelenyi, J., Paldi-Haris, P., and Hollan, S. 1987. Changes in the cholinergic system of lymphocytes due to mitogenic stimulation. Immunol. Lett. 16:49–54.
Nishizuka, Y. 1984. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 308:693–698.
Fujii, T. and Kawashima, K. 2001. YM905, a novel M3 antagonist, inhibits Ca2+ signaling and c-fos gene expression mediated via muscarinic receptors in human T cells. Gen. Pharmacol. 35:71–75.
Fujii, T., Ushiyama, N., Hosonuma, K., Suenaga, A., and Kawashima, K. 2002. Effects of human antithymocyte globulin on acetylcholine synthesis, its release and choline acetyltransferase transcription in a human leukemic T-cell line. J. Neuroimmunol. 128:1–8.
Rinner, I., Kawashima, K., and Schauenstein, K., 1998. Rat lymphocytes produce and secrete acetylcholine in dependent of differentiation and activation. J. Neuroimmunol. 81:31–37.
Jain, J., McCaffrey, P. G., Valge-Archer, V. E., and Rao, A. 1992. Nuclear factor of activated T cells contains Fos and Jun. Nature 356:801–804.
Mori, A., Suko, M., Nishizaki, Y., Kaminuma, S., Kobayashi, S., Matsuzaki, G., Yamamoto, K., Ito, K., Tsuruoka, N., and Okudaira, H. 1995. IL-5 production by CD4+ T cells of asthmatic patients is suppressed by glucocorticoids and the immunosuppressants FK506 and cyclosporin A. Int. Immunol. 7:449–457.
Bock, H. A., Gallati, H., Zurcher, R. M., Bachofen, M., Mihatsch, M. J., Landmann, J., and Thiel, G. 1995. A randomized prospective trial of prophylactic immunosuppression with ATG-fresenius versus OKT-3 after renal transplantation. Transplantation 59:830–840.
Fujii, T. and Kawashima, K. 2001. Activation of cholinergic system in T-lymphocytes by stimulation of CD11a molecule. Neurosci. Res. 25:S147.
Remberger, M., Svahn, B. M., Heutschke, P., Lofgren, C., and Ringden, O. 1999. Effect on cytokine release and graft-versus-host disease of different anti-T cell antibodies during conditioning for unrelated haematopoietic stem cell transplantation. Bone Marrow Transplant 24:823–830.
Wang, S. Z., Zhu, S. Z., and el Fakahany, E. E. 1994. Efficient coupling of m5 muscarinic acetylcholine receptors to activation of nitric oxide synthase. J. Pharmacol. Exp. Ther. 268:552–557.
Author information
Authors and Affiliations
Department of Pharmacology, Kyoritsu College of Pharmacy, 1–5–30 Shibakoen, Minato-ku, Tokyo, 105–8512, Japan
Takeshi Fujii, Yoshihiro Watanabe, Tomoyuki Inoue & Koichiro Kawashima
- Takeshi Fujii
You can also search for this author inPubMed Google Scholar
- Yoshihiro Watanabe
You can also search for this author inPubMed Google Scholar
- Tomoyuki Inoue
You can also search for this author inPubMed Google Scholar
- Koichiro Kawashima
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toKoichiro Kawashima.
Rights and permissions
About this article
Cite this article
Fujii, T., Watanabe, Y., Inoue, T.et al. Upregulation of mRNA Encoding the M5 Muscarinic Acetylcholine Receptor in Human T- and B-Lymphocytes During Immunological Responses.Neurochem Res28, 423–429 (2003). https://doi.org/10.1023/A:1022840416292
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative