Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Structural and catalytic chemistry of magnesium-dependent enzymes

  • Published:
Biometals Aims and scope Submit manuscript

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  • Aaqvist JW. 1990 Free energy relationships in metalloenzyme-catalyzed reactions. Calculations of the effects of metal ion substitutions in staphylococcal nuclease.J Am Chem Soc112, 2860-2868.

    Google Scholar 

  • Almassey RJ, Janson CAet al. 1986 Novel subunit-subunit interactions in the structure of glutamine synthetase.Nature323, 304-307.

    Google Scholar 

  • Baldwin GS, Vipond IBet al. 1995 Rapid reaction analysis of the catalytic cycle of theEcoRV restriction endonuclease.Biochemistry34, 705-714.

    Google Scholar 

  • Black CB, Cowan JA. 1997 Inert Chromium and Cobalt Complexes as Probes of Magnesium Dependent Enzymes. Evaluation of the Stoichiometry and Mechanistic Role of the Essential Metal Cofactor inE. coli Exonuclease III.Eur J Biochem243, 684-689.

    Google Scholar 

  • Black CB, Cowan JA. 1998 A critical evaluation of metal-promoted Klenow 3'-5' exonuclease activity: Calorimetric and kinetic analyses support a one-metal-ion mechanism.J Biol Inorg Chem3, 292-299.

    Google Scholar 

  • Black CB, Foster Met al. 1996 Mechanism of metal-promoted catalysis of nucleic acid hydrolysis byEscherichia coli ribonuclease H. Use of inert chromium complexes to evaluate hydrogen bonding and electrostatic stabilization of the transition state.J Biol Inorg Chem1, 500-506.

    Google Scholar 

  • Black CB, Huang H-Wet al. 1994 Biological Coordination Chemistry of Magnesium, Sodium, and Potassium Ions. Protein and Nucleotide Binding Domains.Coordn Chem Rev135/136, 165-202.

    Google Scholar 

  • Britton KL, Langridge SJet al. 2000 The crystal structure and active site location of isocitrate lyase from the fungusAspergillus nidulans. Structure (London)8, 349-362.

    Google Scholar 

  • Casareno R, Cowan JA. 1996 Magnesium versus manganese cofactors for metallonuclease enzymes. A critical evaluation of thermodynamic binding parameters and stoichiometry.J Chem Soc Chem Commun 1813-1814.

  • Ceska TA, Sayers JRet al. 1996 A helical arch allowing single-stranded DNA to thread through T5 5'-exonuclease.Nature382, 90-93.

    Google Scholar 

  • Cowan JA. 1991 Metallobiochemistry of magnesium. Coordination complexes with biological substrates: Site specificity, the kinetics and thermodynamics of binding, and implications for activity.Inorg Chem30, 2740-2747.

    Google Scholar 

  • Cowan JA, ed. 1995The Biological Chemistry of Magnesium. New York: VCH.

    Google Scholar 

  • Cowan JA. 1997Inorganic Biochemistry: An Introduction. New York: Wiley-VCH; Chpts 1 & 4.

    Google Scholar 

  • Cowan JA. 1998 Metal Activation of Enzymes in Nucleic Acid Biochemistry.Chem Rev98, 1067-1087.

    Google Scholar 

  • Cowan JA. 1998b Magnesium Activation of Nuclease Enzymes-The Importance of Water.Inorg Chim Acta275/276, 24-27.

    Google Scholar 

  • Jeltsch A, Alves Jet al. 1992 On the catalytic mechanism ofEcoRI andEcoRV A detailed proposal based on biochemical results, structural data and molecular modeling.FEBS Lett304, 4-8.

    Google Scholar 

  • Jeltsch A, Alves Jet al. 1993 Substrate-assisted catalysis in the cleavage of DNA by theEcoRI andEcoRV restriction enzymes.Proc Natl Acad Sci90, 8499-8503.

    Google Scholar 

  • Liaw SH, Eisenberg D. 1994 Structural model for the reaction mechanism of glutamine synthetase, based on five crystal structures of enzyme-substrate complexes.Biochemistry33, 675-681.

    Google Scholar 

  • Mueser TC, Nossal NGet al. 1996 Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins.Cell85, 1101-1112.

    Google Scholar 

  • Pelletier H, Sawaya MRet al. 1994 Structures of ternary complexes of Rat DNA polymerase b, a DNA template-primer, and ddCTP.Science264, 1891-1903.

    Google Scholar 

  • Pingoud A, Jeltsch A. 1997 Recognition and cleavage of DNA by type-II restriction endonucleases.Eur J Biochem246, 1-22.

    Google Scholar 

  • Saribas AS, Schindler JFet al. 1994 Mutagenic investigation of conserved functional amino acids inEscherichia coli L-aspartase.J Biol Chem269, 6313-6319.

    Google Scholar 

  • Schindler JF, Viola RE. 1994 Mechanism-Based Inactivation of L-Aspartase fromEscherichia coli. Biochemistry33, 9365-9370.

    Google Scholar 

  • Schlichting I, Almo SCet al. 1990 Time-resolved x-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis.Nature354, 309-311.

    Google Scholar 

  • Sigel H. 1998 Metal-assisted stacking interactions and the facilitated hydrolysis of nucleoside 5'-triphosphates.Pure Appl Chem70, 969-976.

    Google Scholar 

  • Steitz TA, Steitz JA. 1993 A general two-metal-ion mechanism for catalytic RNA.Proc Natl Acad Sci USA90, 6498-6502.

    Google Scholar 

  • van Bastelaere PBM, Kersters-Hilderson HLMet al. 1995 Wild-type and mutant D-xylose isomerase fromActinoplanes missouriensis: Metal-ion dissociation constants, kinetic parameters of deuterated and non-deuterated substrates and solvent-isotope effects.Biochem J307, 135-142.

    Google Scholar 

  • Vipond IB, Baldwin GSet al. 1995 Divalent metal ions at the active site of theEcoRV andEcoRI restriction endonucleases.Biochemistry34, 697-704.

    Google Scholar 

  • Wilcox DE. 1996 Binuclear metallohydrolases.Chem Rev96, 2435-2458.

    Google Scholar 

  • Yamashita MM, Almassey RJet al. 1989 Refined atomic model of glutamine synthetase at 3.5 Å resolution.J Biol Chem264, 17861.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Evans Laboratory of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio, 43210, USA

    J.A. Cowan

Authors
  1. J.A. Cowan

    You can also search for this author inPubMed Google Scholar

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp