Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Genome-wide homology maps among stone marten (Martes foina, 2n = 38), domestic cat (Felis catus, 2n = 38), American mink (Mustela vison, 2n = 30), yellow-throated marten (Martes flavigula, 2n = 40), Old World badger (Meles meles, 2n = 44), ferret badger (Melogale moschata, 2n = 38) and red panda (Ailurus fulgens, 2n = 36) have been established by cross-species chromosome painting with a complete set of stone marten probes. In total, 18 stone marten autosomal probes reveal 20, 19, 21, 18 and 21 pairs of homologous chromosomal segments in the respective genomes of American mink, yellow-throated marten, Old World badger, ferret badger and red panda. Reciprocal painting between stone marten and cat delineated 21 pairs of homologous segments shared in both stone marten and cat genomes. The chromosomal painting results indicate that most chromosomes of these species are highly conserved and show one-to-one correspondence with stone marten and cat chromosomes or chromosomal arms, and that only a few interchromosomal rearrangements (Robertsonian fusions and fissions) have occurred during species radiation. By comparing the distribution patterns of conserved chromosomal segments in both these species and the putative ancestral carnivore karyotype, we have reconstructed the pathway of karyotype evolution of these species from the putative 2n = 42 ancestral carnivore karyotype. Our results support a close phylogenetic relationship between the red panda and mustelids. The homology data presented in these maps will allow us to transfer the cat gene mapping data to other unmapped carnivore species.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  • Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large treesb y combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia).Biol Rev74: 143–175.

    PubMed  Google Scholar 

  • Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX malesus ing bivariate Low karyotype analysis and Low sorted dot blots.Cytometry11: 202–207.

    PubMed  Google Scholar 

  • Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans.Mammalian Genome11: 866–870.

    PubMed  Google Scholar 

  • Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores.J Mammal78 (2): 426–443.

    Google Scholar 

  • Dutrillaux B, Couturier J (1983) The ancestral karyotype of carnivoria: comparison with that of platyrrhine monkeys.Cytogenet Cell Genet35: 200–208.

    PubMed  Google Scholar 

  • Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vsin compatibility among multiple data sets.Mol Phylogenet Evolution9 (3): 414–426.

    Google Scholar 

  • Frönicke L, Müller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH.Chromosoma106: 108–113.

    PubMed  Google Scholar 

  • Graphodatsky AS, Yang F, O'Brien PCMet al. (2001) Phylogenetic implicationso f the 38 putative ancestral chromosome segments for four canid species.Cytogenet Cell Genet92: 243–247.

    PubMed  Google Scholar 

  • Liu R, Nie W, Chen Y (1995) Chromosome study of stone marten.Zool Res (in Chinese) 16 (3): 275–279.

    Google Scholar 

  • Mandahl N, Fredga K (1975) Q-, G-and C-band patternsof the mink chromosomes.Hereditas81: 211–220.

    PubMed  Google Scholar 

  • Murphy WJ, Stanyon R, O'Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping.Genome Biol 2 (6): 1–8.

    Google Scholar 

  • Nash WG, O'Brien SJ (1982) Conserved regions of homologous G-banding chromosomes between orders in mammalian evolution: carnivore and primates.Proc Natl Acad Sci USA79: 6631–6635.

    PubMed  Google Scholar 

  • Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O'Brien SJ (1998) Comparative genomics: Tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting.Cytogenet Cell Genet83: 182–192.

    PubMed  Google Scholar 

  • Nie W, Liu R, Chen Y, Wang J, Yang F (1998) Mapping chromosomal homologies between humans and two largurs (Semnopithecus francoisi andS. phayrei) by chromosome painting.Chromosome Res6: 447–453.

    PubMed  Google Scholar 

  • Nowak RM (1999)Walker's Mammals of the world. Sixth edn, Vol I. Baltimore and London Johns Hopkins University Press, pp 632–793.

    Google Scholar 

  • Rettenberger G, Klett C, Zechner U (1995) Zoo-FISH analysis: cat and human karyotypescl osely resemble the putative ancestral mammalian karyotype.Chromosome Res3: 479–486.

    PubMed  Google Scholar 

  • Spathas D, Ferguson-Smith MA (1993) A simpliced one step procedure for enhanced detection of biotinylated probeswi th Luorescein conjugates.Trends Genet9: 262.

    PubMed  Google Scholar 

  • Telenius H, Pelmear AH, Tunnacliffe Aet al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR ampliced Low-sorted chromosomes.Gene Chromosomes Cancer4: 257–263.

    Google Scholar 

  • Tian Y, Nie W, Wang J, Yang Y, Yang F (2002) Chromosome painting shows the red panda (Ailurus fulgens) hasa conserved karyotype.ACTA Genetica Sinica29: 124–127.

    PubMed  Google Scholar 

  • Wienberg J, Stanyon R, Nash WGet al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting.Cytogenet Cell Genet77: 211–217.

    PubMed  Google Scholar 

  • Wozencraft WC (1989) The phylogeny of the recent Carnivora. In Wilson DE, Reeder, DM eds., ‘Carnivore Behavior, Ecology, and Evolution’ Washington, DC: Smithsonian Institution Press, pp 279–348.

    Google Scholar 

  • Wurster-Hill DH, Bush M (1980) The interrelationship of chromosome banding patterns in the giant panda (Ailuropoda melanoleuca), hybrid bear (Ursus middendorfi x Thalarctos maritimus), and other carnivores.Cytogenet Cell Genet27: 147–154.

    PubMed  Google Scholar 

  • Wurster-Hill DH, Centerwall WR (1982) The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids.Cytogenet Cell Genet34, 178–182.

    PubMed  Google Scholar 

  • Wurster-Hill DH, Gray CW (1973) Giemsa banding patterns in the chromosomeso f twelve speciesof cats (Felidae).Cytogenet Cell Genet12: 377–397.

    Google Scholar 

  • Wurster-Hill DH, Gray CW (1975) The interrelationships of chromosome banding patterns in procyonids viverrids, and felids.Cytogenet Cell Genet15: 306–331.

    PubMed  Google Scholar 

  • Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypesof muntjacs by chromosome painting.Chromosoma103: 642–652.

    PubMed  Google Scholar 

  • Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis).Genomics39: 396–401.

    PubMed  Google Scholar 

  • Yang F, O'Brien PCM, Milne BSet al. (1999) A complete comparative chromosome map for the dog, red fox, and human and itsi ntegration with canine genetic maps.Genomics62,189–202.

    PubMed  Google Scholar 

  • Yang F, Graphodatsky AS, O'Brien PCMet al. (2000) Reciprocal chromosome painting illustrates the history of genome evolution of the domestic cat, dog and human.Chromosome Res8: 393–404.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Key Laboratory of Cellular & Molecular Evolution, The Chinese Academy of Sciences, Kunming, Yunnan, PRC

    Wenhui Nie, Jinhuan Wang, Tian Ying & Fengtang Yang

  2. Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, UK

    Patricia C.M. O'Brien, Beiyuan Fu, Malcolm A. Ferguson-Smith & Fengtang Yang

Authors
  1. Wenhui Nie
  2. Jinhuan Wang
  3. Patricia C.M. O'Brien
  4. Beiyuan Fu
  5. Tian Ying
  6. Malcolm A. Ferguson-Smith
  7. Fengtang Yang

Rights and permissions

About this article

Cite this article

Nie, W., Wang, J., O'Brien, P.C.et al. The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding.Chromosome Res10, 209–222 (2002). https://doi.org/10.1023/A:1015292005631

Download citation

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2026 Movatter.jp