- Wenhui Nie1,
- Jinhuan Wang1,
- Patricia C.M. O'Brien2,
- Beiyuan Fu2,
- Tian Ying1,
- Malcolm A. Ferguson-Smith2 &
- …
- Fengtang Yang1,2
669Accesses
72Citations
4 Altmetric
Abstract
Genome-wide homology maps among stone marten (Martes foina, 2n = 38), domestic cat (Felis catus, 2n = 38), American mink (Mustela vison, 2n = 30), yellow-throated marten (Martes flavigula, 2n = 40), Old World badger (Meles meles, 2n = 44), ferret badger (Melogale moschata, 2n = 38) and red panda (Ailurus fulgens, 2n = 36) have been established by cross-species chromosome painting with a complete set of stone marten probes. In total, 18 stone marten autosomal probes reveal 20, 19, 21, 18 and 21 pairs of homologous chromosomal segments in the respective genomes of American mink, yellow-throated marten, Old World badger, ferret badger and red panda. Reciprocal painting between stone marten and cat delineated 21 pairs of homologous segments shared in both stone marten and cat genomes. The chromosomal painting results indicate that most chromosomes of these species are highly conserved and show one-to-one correspondence with stone marten and cat chromosomes or chromosomal arms, and that only a few interchromosomal rearrangements (Robertsonian fusions and fissions) have occurred during species radiation. By comparing the distribution patterns of conserved chromosomal segments in both these species and the putative ancestral carnivore karyotype, we have reconstructed the pathway of karyotype evolution of these species from the putative 2n = 42 ancestral carnivore karyotype. Our results support a close phylogenetic relationship between the red panda and mustelids. The homology data presented in these maps will allow us to transfer the cat gene mapping data to other unmapped carnivore species.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Bininda-Emonds ORP, Gittleman JL, Purvis A (1999) Building large treesb y combining phylogenetic information: a complete phylogeny of the extant Carnivora (Mammalia).Biol Rev74: 143–175.
Carter NP, Ferguson-Smith ME, Affara NA, Briggs H, Ferguson-Smith MA (1990) Study of X chromosome abnormality in XX malesus ing bivariate Low karyotype analysis and Low sorted dot blots.Cytometry11: 202–207.
Cavagna P, Menotti A, Stanyon R (2000) Genomic homology of the domestic ferret with cats and humans.Mammalian Genome11: 866–870.
Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores.J Mammal78 (2): 426–443.
Dutrillaux B, Couturier J (1983) The ancestral karyotype of carnivoria: comparison with that of platyrrhine monkeys.Cytogenet Cell Genet35: 200–208.
Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vsin compatibility among multiple data sets.Mol Phylogenet Evolution9 (3): 414–426.
Frönicke L, Müller-Navia J, Romanakis K, Scherthan H (1997) Chromosomal homologies between human, harbor seal (Phoca vitulina) and the putative ancestral carnivore karyotype revealed by Zoo-FISH.Chromosoma106: 108–113.
Graphodatsky AS, Yang F, O'Brien PCMet al. (2001) Phylogenetic implicationso f the 38 putative ancestral chromosome segments for four canid species.Cytogenet Cell Genet92: 243–247.
Liu R, Nie W, Chen Y (1995) Chromosome study of stone marten.Zool Res (in Chinese) 16 (3): 275–279.
Mandahl N, Fredga K (1975) Q-, G-and C-band patternsof the mink chromosomes.Hereditas81: 211–220.
Murphy WJ, Stanyon R, O'Brien SJ (2001) Evolution of mammalian genome organization inferred from comparative gene mapping.Genome Biol 2 (6): 1–8.
Nash WG, O'Brien SJ (1982) Conserved regions of homologous G-banding chromosomes between orders in mammalian evolution: carnivore and primates.Proc Natl Acad Sci USA79: 6631–6635.
Nash WG, Wienberg J, Ferguson-Smith MA, Menninger JC, O'Brien SJ (1998) Comparative genomics: Tracking chromosome evolution in the family Ursidae using reciprocal chromosome painting.Cytogenet Cell Genet83: 182–192.
Nie W, Liu R, Chen Y, Wang J, Yang F (1998) Mapping chromosomal homologies between humans and two largurs (Semnopithecus francoisi andS. phayrei) by chromosome painting.Chromosome Res6: 447–453.
Nowak RM (1999)Walker's Mammals of the world. Sixth edn, Vol I. Baltimore and London Johns Hopkins University Press, pp 632–793.
Rettenberger G, Klett C, Zechner U (1995) Zoo-FISH analysis: cat and human karyotypescl osely resemble the putative ancestral mammalian karyotype.Chromosome Res3: 479–486.
Spathas D, Ferguson-Smith MA (1993) A simpliced one step procedure for enhanced detection of biotinylated probeswi th Luorescein conjugates.Trends Genet9: 262.
Telenius H, Pelmear AH, Tunnacliffe Aet al. (1992) Cytogenetic analysis by chromosome painting using DOP-PCR ampliced Low-sorted chromosomes.Gene Chromosomes Cancer4: 257–263.
Tian Y, Nie W, Wang J, Yang Y, Yang F (2002) Chromosome painting shows the red panda (Ailurus fulgens) hasa conserved karyotype.ACTA Genetica Sinica29: 124–127.
Wienberg J, Stanyon R, Nash WGet al. (1997) Conservation of human vs. feline genome organization revealed by reciprocal chromosome painting.Cytogenet Cell Genet77: 211–217.
Wozencraft WC (1989) The phylogeny of the recent Carnivora. In Wilson DE, Reeder, DM eds., ‘Carnivore Behavior, Ecology, and Evolution’ Washington, DC: Smithsonian Institution Press, pp 279–348.
Wurster-Hill DH, Bush M (1980) The interrelationship of chromosome banding patterns in the giant panda (Ailuropoda melanoleuca), hybrid bear (Ursus middendorfi x Thalarctos maritimus), and other carnivores.Cytogenet Cell Genet27: 147–154.
Wurster-Hill DH, Centerwall WR (1982) The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids.Cytogenet Cell Genet34, 178–182.
Wurster-Hill DH, Gray CW (1973) Giemsa banding patterns in the chromosomeso f twelve speciesof cats (Felidae).Cytogenet Cell Genet12: 377–397.
Wurster-Hill DH, Gray CW (1975) The interrelationships of chromosome banding patterns in procyonids viverrids, and felids.Cytogenet Cell Genet15: 306–331.
Yang F, Carter NP, Shi L, Ferguson-Smith MA (1995) A comparative study of karyotypesof muntjacs by chromosome painting.Chromosoma103: 642–652.
Yang F, Müller S, Just R, Ferguson-Smith MA, Wienberg J (1997) Comparative chromosome painting in mammals: Human and the Indian muntjac (Muntiacus muntjak vaginalis).Genomics39: 396–401.
Yang F, O'Brien PCM, Milne BSet al. (1999) A complete comparative chromosome map for the dog, red fox, and human and itsi ntegration with canine genetic maps.Genomics62,189–202.
Yang F, Graphodatsky AS, O'Brien PCMet al. (2000) Reciprocal chromosome painting illustrates the history of genome evolution of the domestic cat, dog and human.Chromosome Res8: 393–404.
Author information
Authors and Affiliations
Key Laboratory of Cellular & Molecular Evolution, The Chinese Academy of Sciences, Kunming, Yunnan, PRC
Wenhui Nie, Jinhuan Wang, Tian Ying & Fengtang Yang
Centre for Veterinary Science, Department of Clinical Veterinary Medicine, University of Cambridge, Cambridge, UK
Patricia C.M. O'Brien, Beiyuan Fu, Malcolm A. Ferguson-Smith & Fengtang Yang
- Wenhui Nie
Search author on:PubMed Google Scholar
- Jinhuan Wang
Search author on:PubMed Google Scholar
- Patricia C.M. O'Brien
Search author on:PubMed Google Scholar
- Beiyuan Fu
Search author on:PubMed Google Scholar
- Tian Ying
Search author on:PubMed Google Scholar
- Malcolm A. Ferguson-Smith
Search author on:PubMed Google Scholar
- Fengtang Yang
Search author on:PubMed Google Scholar
Rights and permissions
About this article
Cite this article
Nie, W., Wang, J., O'Brien, P.C.et al. The genome phylogeny of domestic cat, red panda and five mustelid species revealed by comparative chromosome painting and G-banding.Chromosome Res10, 209–222 (2002). https://doi.org/10.1023/A:1015292005631
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


