Movatterモバイル変換


[0]ホーム

URL:


Recently Viewedclose modal
ACS Publications. Most Trusted. Most Cited. Most Read
Chemical Reviews
The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization

OR SEARCH CITATIONS

My Activity
Recently Viewed

You have not visited any articles yet, Please visit some articles to see contents here.

Publications
CONTENT TYPES
SUBJECTS
    Publications: All Types
    Journal Logo
      Review

      The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization
      Click to copy article linkArticle link copied!

      View Author Information
      Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, U.K.

      Chemical Reviews

      Cite this:Chem. Rev.2012, 112, 10, 5147–5192
      Click to copy citationCitation copied!
      PublishedJuly 19, 2012
      review-article
      Copyright © 2012 American Chemical Society
      ACS Publications
      Copyright © 2012 American Chemical Society

      Subjects

      what are subjects

      Article subjects are automatically applied from the ACS Subject Taxonomy and describe the scientific concepts and themes of the article.

      Note: In lieu of an abstract, this is the article's first page.

      Free first page

      Read thisarticle

      To access this article, please review the available access options below.

      Get instant access

      Purchase Access

      Read this article for 48 hours. Check out below using your ACS ID or as a guest.

      Recommended

      Access through Your Institution

      You may have access to this article through your institution.

      Your institution does not have access to this content.Add or change your institution or let them know you’d like them to include access.

      Recommended

      Log in to Access

      You may have access to this article with your ACS ID if you have previously purchased it or have ACS member benefits. Log in below.

      Cited By

      Click to copy section linkSection link copied!

      This article is cited by 783 publications.

      1. Yin-Lei Han, Huan-Huan Yin, Chen Li, Jiangyue Du, Yi He,Yi-Xin Guan.Discovery of New Pentapeptide Inhibitors Against Amyloid-β Aggregation Using Word2Vec and Molecular Simulation.ACS Chemical Neuroscience2025,16 (6) , 1055-1065.https://doi.org/10.1021/acschemneuro.4c00661
      2. Michael W. Chen, Xiaokang Ren, Xiaowei Song, Naixin Qian, Yuefeng Ma, Wen Yu, Leshan Yang, Wei Min, Richard N. Zare,Yifan Dai.Transition-State-Dependent Spontaneous Generation of Reactive Oxygen Species by Aβ Assemblies Encodes a Self-Regulated Positive Feedback Loop for Aggregate Formation.Journal of the American Chemical Society2025,147 (10) , 8267-8279.https://doi.org/10.1021/jacs.4c15532
      3. Fanghui Liang, Lijun Ma, Guoyang Zhang, Jiahao Han, Mingguang Zhu, Chaofeng Zhu, Yulong Jin,Zhuo Wang.Mapping of Amyloid-β Aggregates In Vivo by a Fluorescent Probe with Dual Recognition Moieties.Analytical Chemistry2025,97 (5) , 3108-3116.https://doi.org/10.1021/acs.analchem.4c06385
      4. Stefania Zimbone, M. Laura Giuffrida, Michele F.M. Sciacca, Rita Carrotta, Fabio Librizzi, Danilo Milardi,Giulia Grasso.A VEGF Fragment Encompassing Residues 10–30 Inhibits Aβ1–42 Amyloid Aggregation and Exhibits Neuroprotective Properties Matching the Full-Length Protein.ACS Chemical Neuroscience2024,15 (24) , 4580-4590.https://doi.org/10.1021/acschemneuro.4c00669
      5. Yuchong Hao, Xin Shen, Jiantao Liu, Zhongqi Cai, Xinquan Wang, Zerui Yang, Fuqing Chen, Baorui Dong, Ruibing Wang, Xiubo Du, Zhenhui Qi,Yan Ge.A Supramolecular Protein Assembly Intrinsically Rescues Memory Deficits in an Alzheimer’s Disease Mouse Model.Nano Letters2024,24 (49) , 15565-15574.https://doi.org/10.1021/acs.nanolett.4c03672
      6. Anindyasundar Adak, Valeria Castelletto, Ian W. Hamley, Jani Seitsonen, Aniket Jana, Satyajit Ghosh, Nabanita Mukherjee,Surajit Ghosh.Self-Assembly and Wound Healing Activity of Biomimetic Cycloalkane-Based Lipopeptides.ACS Applied Materials & Interfaces2024,16 (43) , 58417-58426.https://doi.org/10.1021/acsami.4c14162
      7. Luping Li, Qianyan Duan, Yanan Deng, Zhongju Ye,Lehui Xiao.Curved Nanointerface Controls the Chiral Effect on Peptide Fibrillation.ACS Applied Materials & Interfaces2024,16 (40) , 53532-53540.https://doi.org/10.1021/acsami.4c11858
      8. Kandrakonda Yelamanda Rao, Remya Chandran, K. V. Dileep, Sri Charitha Gorantla, Shaik Jeelan Basha, Sreelakshmi Mothukuru, Irla Siva kumar, Katta Vamsi, Sandeep Kumar, Aramati Bindu Madhava Reddy, Rajagopal Subramanyam,Amooru Gangaiah Damu.Quinazolinone–Hydrazine Cyanoacetamide Hybrids as Potent Multitarget-Directed Druggable Therapeutics against Alzheimer’s Disease: Design, Synthesis, and Biochemical, In Silico, and Mechanistic Analyses.ACS Chemical Neuroscience2024,15 (18) , 3401-3420.https://doi.org/10.1021/acschemneuro.4c00424
      9. Danyang Wang, Guibin Wang, Xiankun Wang, Zhenhua Ren,Chenxi Jia.Native Mass Spectrometry-Centric Approaches Revealed That Neuropeptides Frequently Interact with Amyloid-β.ACS Chemical Neuroscience2024,15 (15) , 2719-2728.https://doi.org/10.1021/acschemneuro.4c00075
      10. Kamaljot Singh, Anupamjeet Kaur, Bhupesh Goyal,Deepti Goyal.Harnessing the Therapeutic Potential of Peptides for Synergistic Treatment of Alzheimer’s Disease by Targeting Aβ Aggregation, Metal-Mediated Aβ Aggregation, Cholinesterase, Tau Degradation, and Oxidative Stress.ACS Chemical Neuroscience2024,15 (14) , 2545-2564.https://doi.org/10.1021/acschemneuro.4c00246
      11. Prabir Kumar Gharai, Juhee Khan, Krishnangsu Pradhan, Rathnam Mallesh, Shubham Garg, Mohammad Umar Arshi, Surajit Barman,Surajit Ghosh.Power of Dopamine: Multifunctional Compound Assisted Conversion of the Most Risk Factor into Therapeutics of Alzheimer’s Disease.ACS Chemical Neuroscience2024,15 (13) , 2470-2483.https://doi.org/10.1021/acschemneuro.3c00777
      12. Chloé Pascouau, Maren Schweitzer,Pol Besenius.Supramolecular Assembly and Thermogelation Strategies Using Peptide–Polymer Conjugates.Biomacromolecules2024,25 (5) , 2659-2678.https://doi.org/10.1021/acs.biomac.4c00031
      13. Nibedita Pradhan,Nihar Ranjan Jana.Nanomodulators That Target Alzheimer’s Disease: A Review.ACS Applied Nano Materials2024,7 (4) , 3515-3545.https://doi.org/10.1021/acsanm.3c04846
      14. Yu-Jen Chang, Yi-Hsin Chien, Chieh-Chun Chang, Pei-Ning Wang, Yun-Ru Chen,Yun-Chorng Chang.Detection of Femtomolar Amyloid-β Peptides for Early-Stage Identification of Alzheimer’s Amyloid-β Aggregation with Functionalized Gold Nanoparticles.ACS Applied Materials & Interfaces2024,16 (3) , 3819-3828.https://doi.org/10.1021/acsami.3c12750
      15. Anurag Prakash Sunda,Anuj Kumar Sharma.Molecular Insights into Cu/Zn Metal Response to the Amyloid β-Peptide (1–42).ACS Physical Chemistry Au2024,4 (1) , 57-66.https://doi.org/10.1021/acsphyschemau.3c00041
      16. Fran Bačić Toplek, Emanuele Scalone, Bruno Stegani, Cristina Paissoni, Riccardo Capelli,Carlo Camilloni.Multi-eGO: Model Improvements toward the Study of Complex Self-Assembly Processes.Journal of Chemical Theory and Computation2024,20 (1) , 459-468.https://doi.org/10.1021/acs.jctc.3c01182
      17. Chen Chen, Zeng-Shuai Yan, Yu-Qiang Ma,Hong-Ming Ding.Effect of Terahertz Waves on the Structure of the Aβ42 Monomer, Dimer, and Protofibril: Insights from Molecular Dynamics Simulations.ACS Chemical Neuroscience2023,14 (23) , 4128-4138.https://doi.org/10.1021/acschemneuro.3c00485
      18. Erika Miyamoto, Toshinori Sato,Teruhiko Matsubara.Cyclization of Peptides Enhances the Inhibitory Activity against Ganglioside-Induced Aβ Fibril Formation.ACS Chemical Neuroscience2023,14 (23) , 4199-4207.https://doi.org/10.1021/acschemneuro.3c00589
      19. Taniya Bhardwaj,Rajanish Giri.Potential of ADAM 17 Signal Peptide To Form Amyloid Aggregates in Vitro.ACS Chemical Neuroscience2023,14 (20) , 3818-3825.https://doi.org/10.1021/acschemneuro.3c00424
      20. Nabanita Mukherjee, Satyajit Ghosh, Jayita Sarkar, Rajsekhar Roy, Debasmita Nandi,Surajit Ghosh.Amyloid-Inspired Engineered Multidomain Amphiphilic Injectable Peptide Hydrogel─An Excellent Antibacterial, Angiogenic, and Biocompatible Wound Healing Material.ACS Applied Materials & Interfaces2023,15 (28) , 33457-33479.https://doi.org/10.1021/acsami.3c06599
      21. Ran Tang, Xiaoyu Yuan, Zhi Jia, Fang Yang, Gang Ye,Jie Liu.Ruthenium Dioxide Nanoparticles Treat Alzheimer’s Disease by Inhibiting Oxidative Stress and Alleviating Neuroinflammation.ACS Applied Nano Materials2023,6 (13) , 11661-11678.https://doi.org/10.1021/acsanm.3c01650
      22. Gobinda Dolai, Sukesh Shill, Sayanta Roy,Bhubaneswar Mandal.Atomic Insight on Inhibition of Fibrillization of Dipeptides by Replacement of Phenylalanine with Tryptophan.Langmuir2023,39 (27) , 9367-9383.https://doi.org/10.1021/acs.langmuir.3c00823
      23. Nico König, Szymon Mikolaj Szostak, Josefine Eilsø Nielsen, Martha Dunbar, Su Yang, Weike Chen, Ari Benjamin, Aurel Radulescu, Najet Mahmoudi, Lutz Willner, Sinan Keten, He Dong,Reidar Lund.Stability of Nanopeptides: Structure and Molecular Exchange of Self-assembled Peptide Fibers.ACS Nano2023,17 (13) , 12394-12408.https://doi.org/10.1021/acsnano.3c01811
      24. José P. Leite, Flávio Figueira, Ricardo F. Mendes, Filipe A. Almeida Paz,Luís Gales.Metal–Organic Frameworks as Sensors for Human Amyloid Diseases.ACS Sensors2023,8 (3) , 1033-1053.https://doi.org/10.1021/acssensors.2c02741
      25. Milad Zangiabadi, Avijit Ghosh,Yan Zhao.Nanoparticle Scanners for the Identification of Key Sequences Involved in the Assembly and Disassembly of β-Amyloid Peptides.ACS Nano2023,17 (5) , 4764-4774.https://doi.org/10.1021/acsnano.2c11186
      26. Amber L. H. Gray, Victoria Norman, Damilola S. Oluwatoba, Rebecca A. Prosser,Thanh D. Do.Potential Protective Function of Aβ42 Monomer on Tauopathies.Journal of the American Society for Mass Spectrometry2023,34 (3) , 472-483.https://doi.org/10.1021/jasms.2c00343
      27. Surajit Kalita, Hagai Bergman, Kshatresh Dutta Dubey,Sason Shaik.How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer’s and Other Senile Plaques?.Journal of the American Chemical Society2023,145 (6) , 3543-3553.https://doi.org/10.1021/jacs.2c12305
      28. Hu Shi, Yue Sun, Zeshuai Yao,Min Bai.New Insights into the Structural and Binding Properties on Aβ Mature Fibrils Due to Histidine Protonation Behaviors.ACS Chemical Neuroscience2023,14 (2) , 218-225.https://doi.org/10.1021/acschemneuro.2c00487
      29. Siddhartha Banerjee, Divya Baghel, Md Hasan Ul Iqbal,Ayanjeet Ghosh.Nanoscale Infrared Spectroscopy Identifies Parallel to Antiparallel β-Sheet Transformation of Aβ Fibrils.The Journal of Physical Chemistry Letters2022,13 (45) , 10522-10526.https://doi.org/10.1021/acs.jpclett.2c02998
      30. Hao Li, Tao Liu,Haw Yang.Amplifying Intermolecular Events by Streptavidin-Induced Proximity.Journal of the American Chemical Society2022,144 (25) , 11377-11385.https://doi.org/10.1021/jacs.2c03666
      31. Pangmiaomiao Zhang,Chunyan Tan.Cross-Reactive Fluorescent Sensor Array for Discrimination of Amyloid Beta Aggregates.Analytical Chemistry2022,94 (14) , 5469-5473.https://doi.org/10.1021/acs.analchem.2c00579
      32. Valeria Castelletto,Ian W. Hamley.Amyloid and Hydrogel Formation of a Peptide Sequence from a Coronavirus Spike Protein.ACS Nano2022,16 (2) , 1857-1867.https://doi.org/10.1021/acsnano.1c10658
      33. Huaxiang Leng, Yuxuan Wang, Juan Wang, Han Sun, Anyang Sun, Marco Pistolozzi, Lei Zhang,Jinwu Yan.Dual-Emission GFP Chromophore-Based Derivative for Imaging and Discriminating Aβ Oligomers and Aggregates.Analytical Chemistry2022,94 (4) , 1999-2006.https://doi.org/10.1021/acs.analchem.1c03452
      34. Atanu Das.Systematic Search for a Predictor for the Clinical Observables of Alzheimer’s Disease.The Journal of Physical Chemistry B2021,125 (44) , 12177-12186.https://doi.org/10.1021/acs.jpcb.1c06725
      35. Aliasghar Sepehri, Binod Nepal,Themis Lazaridis.Distinct Modes of Action of IAPP Oligomers on Membranes.Journal of Chemical Information and Modeling2021,61 (9) , 4645-4655.https://doi.org/10.1021/acs.jcim.1c00767
      36. Fantian Zeng, Kewen Peng, Ling Han,Jian Yang.Photothermal and Photodynamic Therapies via NIR-Activated Nanoagents in Combating Alzheimer’s Disease.ACS Biomaterials Science & Engineering2021,7 (8) , 3573-3585.https://doi.org/10.1021/acsbiomaterials.1c00605
      37. Ipsita Chakraborty, Rajiv K. Kar, Dibakar Sarkar, Sourav Kumar, Nakul C. Maiti, Atin Kumar Mandal,Anirban Bhunia.Solvent Relaxation NMR: A Tool for Real-Time Monitoring Water Dynamics in Protein Aggregation Landscape.ACS Chemical Neuroscience2021,12 (15) , 2903-2916.https://doi.org/10.1021/acschemneuro.1c00262
      38. Yuefei Wang, Qing Li, Jiaxing Zhang, Wei Qi, Shengping You, Rongxin Su,Zhimin He.Self-Templated, Enantioselective Assembly of an Amyloid-like Dipeptide into Multifunctional Hierarchical Helical Arrays.ACS Nano2021,15 (6) , 9827-9840.https://doi.org/10.1021/acsnano.1c00746
      39. Ian W. Hamley.Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures.Biomacromolecules2021,22 (5) , 1835-1855.https://doi.org/10.1021/acs.biomac.1c00240
      40. Lukas Gorecki, Elisa Uliassi, Manuela Bartolini, Jana Janockova, Martina Hrabinova, Vendula Hepnarova, Lukas Prchal, Lubica Muckova, Jaroslav Pejchal, Jana Z. Karasova, Eva Mezeiova, Marketa Benkova, Tereza Kobrlova, Ondrej Soukup, Sabrina Petralla, Barbara Monti, Jan Korabecny,Maria Laura Bolognesi.Phenothiazine-Tacrine Heterodimers: Pursuing Multitarget Directed Approach in Alzheimer’s Disease.ACS Chemical Neuroscience2021,12 (9) , 1698-1715.https://doi.org/10.1021/acschemneuro.1c00184
      41. Zhi Du, Meng Li, Jinsong Ren,Xiaogang Qu.Current Strategies for Modulating Aβ Aggregation with Multifunctional Agents.Accounts of Chemical Research2021,54 (9) , 2172-2184.https://doi.org/10.1021/acs.accounts.1c00055
      42. Lhassane Ismaili, Julie Monnin, Adeline Etievant, Raquel L. Arribas, Lucía Viejo, Bernard Refouvelet, Ondrej Soukup, Jana Janockova, Vendula Hepnarova, Jan Korabecny, Tomas Kucera, Daniel Jun, Rudolf Andrys, Kamil Musilek, Aurelie Baguet, Eva M. García-Frutos, Angela De Simone, Vincenza Andrisano, Manuela Bartolini, Cristóbal de los Ríos, José Marco-Contelles,Emmanuel Haffen.(±)-BIGI-3h: Pentatarget-Directed Ligand combining Cholinesterase, Monoamine Oxidase, and Glycogen Synthase Kinase 3β Inhibition with Calcium Channel Antagonism and Antiaggregating Properties for Alzheimer’s Disease.ACS Chemical Neuroscience2021,12 (8) , 1328-1342.https://doi.org/10.1021/acschemneuro.0c00803
      43. Chandra Mouli R. Madhuranthakam, Arash Shakeri,Praveen P. N. Rao.Modeling the Inhibition Kinetics of Curcumin, Orange G, and Resveratrol with Amyloid-β Peptide.ACS Omega2021,6 (12) , 8680-8686.https://doi.org/10.1021/acsomega.1c00610
      44. Jianhang Li, Guanbin Gao, Xintong Tang, Meng Yu, Meng He,Taolei Sun.Isomeric Effect of Nano-Inhibitors on Aβ40 Fibrillation at The Nano-Bio Interface.ACS Applied Materials & Interfaces2021,13 (4) , 4894-4904.https://doi.org/10.1021/acsami.0c21906
      45. Zhongju Ye, Xin Geng, Lin Wei, Zhaohui Li, Shen Lin,Lehui Xiao.Length-Dependent Distinct Cytotoxic Effect of Amyloid Fibrils beyond Optical Diffraction Limit Revealed by Nanoscopic Imaging.ACS Nano2021,15 (1) , 934-943.https://doi.org/10.1021/acsnano.0c07555
      46. Gantulga Norjmaa, Albert Solé-Daura, Maria Besora, Josep M. Ricart,Jorge J. Carbó.Peptide Hydrolysis by Metal (Oxa)cyclen Complexes: Revisiting the Mechanism and Assessing Ligand Effects.Inorganic Chemistry2021,60 (2) , 807-815.https://doi.org/10.1021/acs.inorgchem.0c02859
      47. Barbara B. Gerbelli, Cristiano L. P. Oliveira, Emerson R. Silva, Ian W. Hamley,Wendel A. Alves.Amyloid Formation by Short Peptides in the Presence of Dipalmitoylphosphatidylcholine Membranes.Langmuir2020,36 (48) , 14793-14801.https://doi.org/10.1021/acs.langmuir.0c02760
      48. Yunxiang Sun,Feng Ding.αB-Crystallin Chaperone Inhibits Aβ Aggregation by Capping the β-Sheet-Rich Oligomers and Fibrils.The Journal of Physical Chemistry B2020,124 (45) , 10138-10146.https://doi.org/10.1021/acs.jpcb.0c07256
      49. Subrata Mondal, Yoya Vashi, Priyam Ghosh, Dhrubajyoti Roy, Manash Barthakur, Sachin Kumar,Parameswar Krishnan Iyer.Amyloid Targeting “Artificial Chaperone” Impairs Oligomer Mediated Neuronal Damage and Mitochondrial Dysfunction Associated with Alzheimer’s Disease.ACS Chemical Neuroscience2020,11 (20) , 3277-3287.https://doi.org/10.1021/acschemneuro.0c00387
      50. Francisco Fueyo-González, Juan A. González-Vera, Ibon Alkorta, Lourdes Infantes, Maria Luisa Jimeno, Paula Aranda, Dario Acuña-Castroviejo, Alvaro Ruiz-Arias, Angel Orte,Rosario Herranz.Environment-Sensitive Probes for Illuminating Amyloid Aggregation In Vitro and in Zebrafish.ACS Sensors2020,5 (9) , 2792-2799.https://doi.org/10.1021/acssensors.0c00587
      51. Hongjian He, Weiyi Tan, Jiaqi Guo, Meihui Yi, Adrianna N. Shy,Bing Xu.Enzymatic Noncovalent Synthesis.Chemical Reviews2020,120 (18) , 9994-10078.https://doi.org/10.1021/acs.chemrev.0c00306
      52. Sara García-Viñuales, Rashik Ahmed, Michele F. M. Sciacca, Valeria Lanza, Maria Laura Giuffrida, Stefania Zimbone, Valeria Romanucci, Armando Zarrelli, Corrado Bongiorno, Natalia Spinella, Clelia Galati, Giovanni Di Fabio, Giuseppe Melacini,Danilo Milardi.Trehalose Conjugates of Silybin as Prodrugs for Targeting Toxic Aβ Aggregates.ACS Chemical Neuroscience2020,11 (17) , 2566-2576.https://doi.org/10.1021/acschemneuro.0c00232
      53. Krishnangsu Pradhan, Gaurav Das, Chirantan Kar, Nabanita Mukherjee, Juhee Khan, Tanushree Mahata, Surajit Barman,Surajit Ghosh.Rhodamine-Based Metal Chelator: A Potent Inhibitor of Metal-Catalyzed Amyloid Toxicity.ACS Omega2020,5 (30) , 18958-18967.https://doi.org/10.1021/acsomega.0c02235
      54. Sneha Menon, Neelanjana Sengupta,Payel Das.Nanoscale Interplay of Membrane Composition and Amyloid Self-Assembly.The Journal of Physical Chemistry B2020,124 (28) , 5837-5846.https://doi.org/10.1021/acs.jpcb.0c03796
      55. Timothy Cholko, Joseph Barnum,Chia-en A. Chang.Amyloid-β (Aβ42) Peptide Aggregation Rate and Mechanism on Surfaces with Widely Varied Properties: Insights from Brownian Dynamics Simulations.The Journal of Physical Chemistry B2020,124 (27) , 5549-5558.https://doi.org/10.1021/acs.jpcb.0c02926
      56. Amandeep Kaur, Anupamjeet Kaur, Deepti Goyal,Bhupesh Goyal.How Does the Mono-Triazole Derivative Modulate Aβ42 Aggregation and Disrupt a Protofibril Structure: Insights from Molecular Dynamics Simulations.ACS Omega2020,5 (25) , 15606-15619.https://doi.org/10.1021/acsomega.0c01825
      57. Sarah J. Cox, Brian Lam, Ajay Prasad, Hannah A. Marietta, Nicholas V. Stander, Joseph G. Joel, Bikash R. Sahoo, Fucheng Guo, Andrea K. Stoddard, Magdalena I. Ivanova,Ayyalusamy Ramamoorthy.High-Throughput Screening at the Membrane Interface Reveals Inhibitors of Amyloid-β.Biochemistry2020,59 (24) , 2249-2258.https://doi.org/10.1021/acs.biochem.0c00328
      58. Chaejeong Heo, Taewoo Ha, Chunjae You, Thuy Huynh, Hosub Lim, Jiwon Kim, Mallikarjuna Reddy Kesama, Jinkee Lee, Teun-Teun Kim,Young Hee Lee.Identifying Fibrillization State of Aβ Protein via Near-Field THz Conductance Measurement.ACS Nano2020,14 (6) , 6548-6558.https://doi.org/10.1021/acsnano.9b08572
      59. Liliya Vugmeyster, Dan Fai Au, Dmitry Ostrovsky, Dillon Ray Lee Rickertsen,Scott M. Reed.Dynamics of Serine-8 Side-Chain in Amyloid-β Fibrils and Fluorenylmethyloxycarbonyl Serine Amino Acid, Investigated by Solid-State Deuteron NMR.The Journal of Physical Chemistry B2020,124 (23) , 4723-4731.https://doi.org/10.1021/acs.jpcb.0c02490
      60. Xiaoran Roger Liu, Mengru Mira Zhang,Michael L. Gross.Mass Spectrometry-Based Protein Footprinting for Higher-Order Structure Analysis: Fundamentals and Applications.Chemical Reviews2020,120 (10) , 4355-4454.https://doi.org/10.1021/acs.chemrev.9b00815
      61. Pranab Chandra Saha, Rabi Sankar Das, Tanima Chatterjee, Maitree Bhattacharyya,Samit Guha.Supramolecular β-Sheet Forming Peptide Conjugated with Near-Infrared Chromophore for Selective Targeting, Imaging, and Dysfunction of Mitochondria.Bioconjugate Chemistry2020,31 (5) , 1301-1306.https://doi.org/10.1021/acs.bioconjchem.0c00153
      62. Komala Pandurangan, Bappaditya Roy, Kolla Rajasekhar, Yelisetty Venkata Suseela, Prachitha Nagendra, Abhishek Chaturvedi, Upadrasta R. Satwik, N. Arul Murugan, Upadrasta Ramamurty,Thimmaiah Govindaraju.Molecular Architectonics of Cyclic Dipeptide Amphiphiles and Their Application in Drug Delivery.ACS Applied Bio Materials2020,3 (5) , 3413-3422.https://doi.org/10.1021/acsabm.0c00340
      63. Valeria Castelletto, Jani Seitsonen, Kunal M. Tewari, Abshar Hasan, Robert M. Edkins, Janne Ruokolainen, Lalit M. Pandey, Ian W. Hamley,King Hang Aaron Lau.Self-Assembly of Minimal Peptoid Sequences.ACS Macro Letters2020,9 (4) , 494-499.https://doi.org/10.1021/acsmacrolett.9b01010
      64. Juliane N. B. D. Pelin, Barbara B. Gerbelli, Charlotte J. C. Edwards-Gayle, Andrea M. Aguilar, Valeria Castelletto, Ian W. Hamley,Wendel A. Alves.Amyloid Peptide Mixtures: Self-Assembly, Hydrogelation, Nematic Ordering, and Catalysts in Aldol Reactions.Langmuir2020,36 (11) , 2767-2774.https://doi.org/10.1021/acs.langmuir.0c00198
      65. Barbara B. Gerbelli, Isabelle Ly, Sandra Pedemay, Wendel A. Alves,Elisabeth A. de Oliveira.The Role of Amylogenic Fiber Aggregation on the Elasticity of a Lipid Membrane.ACS Applied Bio Materials2020,3 (2) , 815-822.https://doi.org/10.1021/acsabm.9b00861
      66. Sai Vamshi R. Jonnalagadda, Andrew James Gerace, Kathleen Thai, Jonathan Johnson, Kostas Tsimenidis, Joseph M. Jakubowski, Christina Shen, Kendal J. Henderson, Phanourios Tamamis,Manos Gkikas.Amyloid Peptide Scaffolds Coordinate with Alzheimer’s Disease Drugs.The Journal of Physical Chemistry B2020,124 (3) , 487-503.https://doi.org/10.1021/acs.jpcb.9b10368
      67. Jian Yang, Fantian Zeng, Yiran Ge, Kewen Peng, Xiaofang Li, Yuyan Li,Yungen Xu.Development of Near-Infrared Fluorescent Probes for Use in Alzheimer’s Disease Diagnosis.Bioconjugate Chemistry2020,31 (1) , 2-15.https://doi.org/10.1021/acs.bioconjchem.9b00695
      68. Albert W. Pilkington, IV, Jane Schupp, Morgan Nyman, Stephen J. Valentine, David M. Smith,Justin Legleiter.Acetylation of Aβ40 Alters Aggregation in the Presence and Absence of Lipid Membranes.ACS Chemical Neuroscience2020,11 (2) , 146-161.https://doi.org/10.1021/acschemneuro.9b00483
      69. Amir Aliyan, Nathan P. Cook,Angel A. Martí.Interrogating Amyloid Aggregates using Fluorescent Probes.Chemical Reviews2019,119 (23) , 11819-11856.https://doi.org/10.1021/acs.chemrev.9b00404
      70. Crystal M. Vander Zanden, Lois Wampler, Isabella Bowers, Erik B. Watkins, Jaroslaw Majewski,Eva Y. Chi.Fibrillar and Nonfibrillar Amyloid Beta Structures Drive Two Modes of Membrane-Mediated Toxicity.Langmuir2019,35 (48) , 16024-16036.https://doi.org/10.1021/acs.langmuir.9b02484
      71. Sijia Hao, Xia Li, Ailing Han, Yayu Yang, Guozhen Fang, Jifeng Liu,Shuo Wang.CLVFFA-Functionalized Gold Nanoclusters Inhibit Aβ40 Fibrillation, Fibrils’ Prolongation, and Mature Fibrils’ Disaggregation.ACS Chemical Neuroscience2019,10 (11) , 4633-4642.https://doi.org/10.1021/acschemneuro.9b00469
      72. AngelaSin-Yee Law, Lawrence Cho-Cheung Lee, Margaret Ching-Lam Yeung, Kenneth Kam-Wing Lo,Vivian Wing-Wah Yam.Amyloid Protein-Induced Supramolecular Self-Assembly of Water-Soluble Platinum(II) Complexes: A Luminescence Assay for Amyloid Fibrillation Detection and Inhibitor Screening.Journal of the American Chemical Society2019,141 (46) , 18570-18577.https://doi.org/10.1021/jacs.9b09515
      73. Torsten John, George W. Greene, Nitin A. Patil, Tiara J. A. Dealey, Mohammed A. Hossain, Bernd Abel,Lisandra L. Martin.Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity.Langmuir2019,35 (45) , 14522-14531.https://doi.org/10.1021/acs.langmuir.9b02063
      74. Charlène Esmieu, Djamila Guettas, Amandine Conte-Daban, Laurent Sabater, Peter Faller,Christelle Hureau.Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies.Inorganic Chemistry2019,58 (20) , 13509-13527.https://doi.org/10.1021/acs.inorgchem.9b00995
      75. Valeria Castelletto, Charlotte J. C. Edwards-Gayle, Francesca Greco, Ian W. Hamley, Jani Seitsonen,Janne Ruokolainen.Self-Assembly, Tunable Hydrogel Properties, and Selective Anti-Cancer Activity of a Carnosine-Derived Lipidated Peptide.ACS Applied Materials & Interfaces2019,11 (37) , 33573-33580.https://doi.org/10.1021/acsami.9b09065
      76. Amandeep Kaur, Simranjeet Singh Narang, Anupamjeet Kaur, Sukhmani Mann, Nitesh Priyadarshi, Bhupesh Goyal, Nitin Kumar Singhal,Deepti Goyal.Multifunctional Mono-Triazole Derivatives Inhibit Aβ42 Aggregation and Cu2+-Mediated Aβ42 Aggregation and Protect Against Aβ42-Induced Cytotoxicity.Chemical Research in Toxicology2019,32 (9) , 1824-1839.https://doi.org/10.1021/acs.chemrestox.9b00168
      77. Torsten John, Tiara J. A. Dealey, Nicholas P. Gray, Nitin A. Patil, Mohammed A. Hossain, Bernd Abel, John A. Carver, Yuning Hong,Lisandra L. Martin.The Kinetics of Amyloid Fibrillar Aggregation of Uperin 3.5 Is Directed by the Peptide’s Secondary Structure.Biochemistry2019,58 (35) , 3656-3668.https://doi.org/10.1021/acs.biochem.9b00536
      78. Sourav Samanta, Kolla Rajasekhar, Vardhaman Babagond,Thimmaiah Govindaraju.Small Molecule Inhibits Metal-Dependent and -Independent Multifaceted Toxicity of Alzheimer’s Disease.ACS Chemical Neuroscience2019,10 (8) , 3611-3621.https://doi.org/10.1021/acschemneuro.9b00216
      79. Zhongju Ye, Lin Wei, Yiliang Li,Lehui Xiao.Efficient Modulation of β-Amyloid Peptide Fibrillation with Polymer Nanoparticles Revealed by Super-Resolution Optical Microscopy.Analytical Chemistry2019,91 (13) , 8582-8590.https://doi.org/10.1021/acs.analchem.9b01877
      80. Yuechuan Xu, Mohammad S. Safari, Wenchuan Ma, Nicholas P. Schafer, Peter G. Wolynes,Peter G. Vekilov.Steady, Symmetric, and Reversible Growth and Dissolution of Individual Amyloid-β Fibrils.ACS Chemical Neuroscience2019,10 (6) , 2967-2976.https://doi.org/10.1021/acschemneuro.9b00179
      81. PhuongH. Nguyen, Josep M. Campanera, Son Tung Ngo, Antoine Loquet,Philippe Derreumaux.Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. I. In a Bilayer Mimicking a Neuronal Membrane.The Journal of Physical Chemistry B2019,123 (17) , 3643-3648.https://doi.org/10.1021/acs.jpcb.9b01206
      82. Zengqiang Gao, Yueyun Li, Chunyan Zhang, Shuan Zhang, Yilei Jia, Faying Li, Hui Ding, Xinjin Li, Zhiwei Chen,Qin Wei.AuCuxO-Embedded Mesoporous CeO2 Nanocomposites as a Signal Probe for Electrochemical Sensitive Detection of Amyloid-Beta Protein.ACS Applied Materials & Interfaces2019,11 (13) , 12335-12341.https://doi.org/10.1021/acsami.9b01445
      83. Dmytro Honcharenko, Alok Juneja, Firoz Roshan, Jyotirmoy Maity, Lorena Galán-Acosta, Henrik Biverstål, Erik Hjorth, Jan Johansson, André Fisahn, Lennart Nilsson,Roger Strömberg.Amyloid-β Peptide Targeting Peptidomimetics for Prevention of Neurotoxicity.ACS Chemical Neuroscience2019,10 (3) , 1462-1477.https://doi.org/10.1021/acschemneuro.8b00485
      84. Zhenzhen Yin, Shuhui Wang, Baochai Shen, Chunyan Deng, Qiuyun Tu, Yan Jin, Lu Shen, Bin Jiao,Juan Xiang.Coimmunocapture and Electrochemical Quantitation of Total and Phosphorylated Amyloid-β40 Monomers.Analytical Chemistry2019,91 (5) , 3539-3545.https://doi.org/10.1021/acs.analchem.8b05307
      85. Jun Zhang, Audun Konsmo, Alexander Sandberg, Xiongyu Wu, Sofie Nyström, Ulrike Obermüller, Bettina M. Wegenast-Braun, Peter Konradsson, Mikael Lindgren,Per Hammarström.Phenolic Bis-styrylbenzo[c]-1,2,5-thiadiazoles as Probes for Fluorescence Microscopy Mapping of Aβ Plaque Heterogeneity.Journal of Medicinal Chemistry2019,62 (4) , 2038-2048.https://doi.org/10.1021/acs.jmedchem.8b01681
      86. MashaG. Savelieff, Geewoo Nam, Juhye Kang, Hyuck Jin Lee, Misun Lee,Mi Hee Lim.Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade.Chemical Reviews2019,119 (2) , 1221-1322.https://doi.org/10.1021/acs.chemrev.8b00138
      87. Fufeng Liu, Wenjuan Wang, Jingcheng Sang, Longgang Jia,Fuping Lu.Hydroxylated Single-Walled Carbon Nanotubes Inhibit Aβ42 Fibrillogenesis, Disaggregate Mature Fibrils, and Protect against Aβ42-Induced Cytotoxicity.ACS Chemical Neuroscience2019,10 (1) , 588-598.https://doi.org/10.1021/acschemneuro.8b00441
      88. James T. Brewster II, Simone Dell’Acqua, Danny Q. Thach,Jonathan L. Sessler.Classics in Chemical Neuroscience: Donepezil.ACS Chemical Neuroscience2019,10 (1) , 155-167.https://doi.org/10.1021/acschemneuro.8b00517
      89. Jie Wang, Zhongyang Zhang, Hongxing Zhang, Chenglong Li, Menglin Chen, Lei Liu,Mingdong Dong.Enhanced Photoresponsive Graphene Oxide-Modified g-C3N4 for Disassembly of Amyloid β Fibrils.ACS Applied Materials & Interfaces2019,11 (1) , 96-103.https://doi.org/10.1021/acsami.8b10343
      90. Jong-Min Suh, Gunhee Kim, Juhye Kang,Mi Hee Lim.Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation.Inorganic Chemistry2019,58 (1) , 8-17.https://doi.org/10.1021/acs.inorgchem.8b02813
      91. Baoxia Liu, Haoshuang Shen, Yuanqiang Hao, Xu Zhu, Suzhi Li, Yankai Huang, Peng Qu,Maotian Xu.Lanthanide Functionalized Metal–Organic Coordination Polymer: Toward Novel Turn-On Fluorescent Sensing of Amyloid β-Peptide.Analytical Chemistry2018,90 (21) , 12449-12455.https://doi.org/10.1021/acs.analchem.8b01546
      92. Fan Huang, Aoting Qu, Huiru Yang, Lin Zhu, Hao Zhou, Jianfeng Liu, Jiafu Long,Linqi Shi.Self-Assembly Molecular Chaperone to Concurrently Inhibit the Production and Aggregation of Amyloid β Peptide Associated with Alzheimer’s Disease.ACS Macro Letters2018,7 (8) , 983-989.https://doi.org/10.1021/acsmacrolett.8b00495
      93. Cecilia Månsson, Remco T. P. van Cruchten, Ulrich Weininger, Xiaoting Yang, Risto Cukalevski, Paolo Arosio, Christopher M. Dobson, Tuomas Knowles, Mikael Akke, Sara Linse,Cecilia Emanuelsson.Conserved S/T Residues of the Human Chaperone DNAJB6 Are Required for Effective Inhibition of Aβ42 Amyloid Fibril Formation.Biochemistry2018,57 (32) , 4891-4902.https://doi.org/10.1021/acs.biochem.8b00353
      94. K. Rajasekhar, Kapilkumar Mehta,Thimmaiah Govindaraju.Hybrid Multifunctional Modulators Inhibit Multifaceted Aβ Toxicity and Prevent Mitochondrial Damage.ACS Chemical Neuroscience2018,9 (6) , 1432-1440.https://doi.org/10.1021/acschemneuro.8b00033
      95. ShaikJeelan Basha, Penumala Mohan, Daniel Pushparaju Yeggoni, Zinka Raveendra Babu, Palaka Bhagath Kumar, Ampasala Dinakara Rao, Rajagopal Subramanyam,Amooru Gangaiah Damu.New Flavone-Cyanoacetamide Hybrids with a Combination of Cholinergic, Antioxidant, Modulation of β-Amyloid Aggregation, and Neuroprotection Properties as Innovative Multifunctional Therapeutic Candidates for Alzheimer’s Disease and Unraveling Their Mechanism of Action with Acetylcholinesterase.Molecular Pharmaceutics2018,15 (6) , 2206-2223.https://doi.org/10.1021/acs.molpharmaceut.8b00041
      96. Xuehan Jiang, Yang Cao,Wei Han.In Silico Study of Recognition between Aβ40 and Aβ40 Fibril Surfaces: An N-Terminal Helical Recognition Motif and Its Implications for Inhibitor Design.ACS Chemical Neuroscience2018,9 (5) , 935-944.https://doi.org/10.1021/acschemneuro.7b00359
      97. Leena Aggarwal,Parbati Biswas.Hydration Water Distribution around Intrinsically Disordered Proteins.The Journal of Physical Chemistry B2018,122 (15) , 4206-4218.https://doi.org/10.1021/acs.jpcb.7b11091
      98. Tarek Mohamed, Sarbjeet Singh Gujral,Praveen P. N. Rao.Tau Derived Hexapeptide AcPHF6 Promotes Beta-Amyloid (Aβ) Fibrillogenesis.ACS Chemical Neuroscience2018,9 (4) , 773-782.https://doi.org/10.1021/acschemneuro.7b00433
      99. Yi-Chih Lin, Chen Li,Zahra Fakhraai.Kinetics of Surface-Mediated Fibrillization of Amyloid-β (12–28) Peptides.Langmuir2018,34 (15) , 4665-4672.https://doi.org/10.1021/acs.langmuir.7b02744
      100. Nibedita Pradhan, Nihar R. Jana,Nikhil R. Jana.Inhibition of Protein Aggregation by Iron Oxide Nanoparticles Conjugated with Glutamine- and Proline-Based Osmolytes.ACS Applied Nano Materials2018,1 (3) , 1094-1103.https://doi.org/10.1021/acsanm.7b00245
      Load more citations

      Chemical Reviews

      Cite this:Chem. Rev.2012, 112, 10, 5147–5192
      Click to copy citationCitation copied!
      PublishedJuly 19, 2012
      Copyright © 2012 American Chemical Society

      Article Views

      19k

      19,556 total views

      Altmetric

      -

      Citations

      Learn about these metrics

      Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

      Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

      The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

      Recommended Articles

      2025-03-26T04:07:26.029-07:00

      Please be aware that pubs.acs.org is undergoing maintenance from Saturday February 1 to Monday Febraury 3, that may have an impact on your experience. During this time, you may not be able to access certain features like login, purchasing single articles, saving searches or running existing saved searches, modifying your e-Alert preferences, or accessing Librarian administrative functions. We appreciate your patience as we continue to improve the ACS Publications platform.

      This website uses cookies to improve your user experience. By continuing to use the site, you are accepting our use of cookies.Read the ACS privacy policy.

      CONTINUE

      [8]ページ先頭

      ©2009-2025 Movatter.jp