Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-16T17:19:31.764Z Has data issue: false hasContentIssue false
  • English
  • Français

Transient and slim versus recurrent and fat: Random walks and the trees they grow

Published online by Cambridge University Press: 01 October 2019

Giulio Iacobelli*
Affiliation:
Federal University of Rio de Janeiro
Daniel R. Figueiredo*
Affiliation:
Federal University of Rio de Janeiro
Giovanni Neglia*
Affiliation:
Inria, Université Côte d’Azur
*
* Postal address: Instituto de Matemática, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Email addressgiulio@im.ufrj.br
** Postal address: Department of Computer and System Engineering, COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. Email addressdaniel@cos.ufrj.br
*** Postal address: NEO Team, Inria, Sophia-Antipolis, France.Email addressgiovanni.neglia@inria.fr

Abstract

The no restart random walk (NRRW) is a random network growth model driven by a random walk that builds the graph while moving on it, adding and connecting a new leaf node to the current position of the walker everys steps. We show a fundamental dichotomy in NRRW with respect to the parity ofs: for${s}=1$ we prove that the random walk is transient and non-leaf nodes have degrees bounded above by an exponential distribution; fors even we prove that the random walk is recurrent and non-leaf nodes have degrees bounded below by a power law distribution. These theoretical findings highlight and confirm the diverse and rich behaviour of NRRW observed empirically.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Amorim,B.,Figueiredo,D.,Iacobelli,G. andNeglia,G. (2016).Growing networks through random walks without restarts. InComplex Networks VII, edsCherifi,H.et al., pp.199211.Springer.CrossRefGoogle Scholar
Angel,O.,Crawford,N. andKozma,G. (2014).Localization for linearly edge reinforced random walks.Duke Math. J.163,889921.CrossRefGoogle Scholar
Barabási,A.-L. andAlbert,R. (1999).Emergence of scaling in random networks.Science286,509512.CrossRefGoogle ScholarPubMed
Campanino,M. andPetritis,D. (2014).Type transition of simple random walks on randomly directed regular lattices.J. Appl. Prob.51,10651080.CrossRefGoogle Scholar
Cannings,C. andJordan,J. (2013).Random walk attachment graphs.Electron. Comm. Prob.18,15.CrossRefGoogle Scholar
Dembo,A.,Huang,R. andSidoravicius,V. (2014).Walking within growing domains: recurrence versus transience.Electron. J. Prob.19,120.CrossRefGoogle Scholar
Disertori,M.,Sabot,C. andTarrès,P. (2015).Transience of edge-reinforced random walk.Comm. Math. Phys.339,121148.CrossRefGoogle Scholar
Figueiredo,D. R.,Iacobelli,G.,Oliveira,R. I.,Reed,B. andRibeiro,R. (2017). Building your path to escape from home. Available at arXiv:1709.10506.Google Scholar
Hoffman,C.,Johnson,T. andJunge,M. (2016).From transience to recurrence with Poisson tree frogs.Ann. Appl. Prob.26,16201635.CrossRefGoogle Scholar
Ikeda,N. (2014).Network formed by movements of random walkers on a Bethe lattice.J. Phys. Conf. Series490,012189.CrossRefGoogle Scholar
Kumar,R.,Novak,J. andTomkins,A. (2010).Structure and evolution of online social networks. InLink Mining: Models, Algorithms, and Applications, edsYu,P. S.et al., pp.337357.Springer.CrossRefGoogle Scholar
Li,M.,Gao,L.,Fan,Y.,Wu,J. andDi,Z. (2010).Emergence of global preferential attachment from local interaction.New J. Phys.12,043029.CrossRefGoogle Scholar
Newman,M. (2018).Networks.Oxford University Press.CrossRefGoogle Scholar
Saramäki,J. andKaski,K. (2004).Scale-free networks generated by random walkers.Phys. A Stat. Mech. Appl.341,8086.CrossRefGoogle Scholar
Sporns,O. (2010).Networks of the Brain.MIT Press.CrossRefGoogle Scholar
Vázquez,A. (2003).Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations.Phys. Rev. E67,056104.CrossRefGoogle ScholarPubMed
Weng,L.,Ratkiewicz,J.,Perra,N.,Gonçalves,B.,Castillo,C.,Bonchi,F.,Schifanella,R.,Menczer,F. andFlammini,A. (2013). The role of information diffusion in the evolution of social networks. InACM International Conference on Knowledge Discovery and Data Mining (KDD), pp.356364. ACM.CrossRefGoogle Scholar