Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-05-01T23:24:14.476Z Has data issue: false hasContentIssue false
  • English
  • Français

Inhomogeneous random coverings of topological Markov shifts

Published online by Cambridge University Press: 22 June 2017

STÉPHANE SEURET*
Affiliation:
Université Paris-Est, LAMA (UMR 8050) UPEMLV, UPEC, CNRS F-94010, Créteil, France. e-mail: seuret@u-pec.fr

Abstract

Let$\mathscr{S}$ be an irreducible topological Markov shift, and let μ be a shift-invariant Gibbs measure on$\mathscr{S}$. Let (Xn)n ≥ 1 be a sequence of i.i.d. random variables with common law μ. In this paper, we focus on the size of the covering of$\mathscr{S}$ by the ballsB(Xn,ns). This generalises the original Dvoretzky problem by considering random coverings of fractal sets by non-homogeneously distributed balls. We compute the almost sure dimension of lim supn →+∞B(Xn,ns) for everys ≥ 0, which depends ons and the multifractal features of μ. Our results include the inhomogeneous covering of$\mathbb{T}^d$ and Sierpinski carpets.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

[1]Barral,J. andSeuret,S.Combining multifractal additive and multiplicative chaos.Commun. Math. Phys.257(2) (2005),473497.Google Scholar
[2]Barral,J. andSeuret,S.Heterogeneous ubiquitous systems in$\mathbb{R}^d$ and Hausdorff dimensions.Bull. Brazilian Math. Soc.38(3) (2007),467515.Google Scholar
[3]Barral,J. andSeuret,S.Ubiquity and large intersections properties under digit frequencies constraints.Math. Proc. Camb. Phil. Soc.145(3) (2008),527548.Google Scholar
[4]Barral,J.,Ben Nasr,F. andPeyrière,J.Comparing multifractal formalisms: the neighbouring condition.Asian J. Math.7 (2003),149166.Google Scholar
[5]Barral,J. andFan,A.H.Covering numbers of different points in Dvoretzky covering.Bull. Sci. Math.129 (2005),275317.Google Scholar
[6]Brown,G.,Michon,G. andPeyrière,J.On the multifractal analysis of measures.J. Stat. Phys.66 (1992),775790.Google Scholar
[7]Collet,P. andKoukiou,F.Large deviations for multiplicative chaos.Commun. Math. Phys.147 (1992),329342.Google Scholar
[8]Collet,P.,Lebowitz,J.L. andPorzio,A.The dimension spectrum of some dynamical systems.J. Stat. Phys.47 (1987),609644.Google Scholar
[9]Dodson,M.,Melián,M.,Pestana,D. andVelani,S.Patterson measure and Ubiquity.Ann. Acad. Sci. Fenn. Ser. A I Math.20 (1995),3760.Google Scholar
[10]Dvoretzky,A.On covering the circle by randomly placed arcs.Pro. Nat. Acad. Sci. USA42 (1956),199203.Google Scholar
[11]Erdös,P.Some unsolved problems.Magyar Tud. Akad. Mat. Kutató Int. Közl.6 (1961),221254.Google Scholar
[12]Fan,A. H.,Feng,D. J. andWu,J.Recurrence, dimension and entropy.J. London Math. Soc.64(1) (2001),229244.Google Scholar
[13]Fan,A. H.,Schmeling,J. andTroubetzkoy,S.A multifractal mass transference principle for Gibbs measures with applications to dynamical Diophantine approximation.Proc. London Math. Soc.107(5) (2013),11731219.Google Scholar
[14]Feng,D.J.,Jarvenpäa,E.,Jarvenpäa,M. andSuomala,V. Dimensions of random covering sets in Riemann manifolds. arXiv:1508.07881.Google Scholar
[15]Heurteaux,Y.Estimations de la dimension inférieure et de la dimension supérieure des mesures.Ann. Inst. H. Poincaré Probab. Statist.34 (1998),309338.Google Scholar
[16]Jarvenpäa,E.,Jarvenpäa,M.,Koivusalo,H.,Li,B. andSuomala,V.Hausdorff dimension of affine random covering sets in torus.Ann. Inst. Henri Poincaré Probab. Stat.50(4) (2014),13711384.Google Scholar
[17]Jarvenpäa,E.,Jarvenpäa,M.,Koivusalo,B. Li,Suomala,V. andXiao,Y. Hitting probabilities of random covering sets in torus and metric spaces. Preprint, arXiv: 1510.06630.Google Scholar
[18]Kahane,J.-P.Sur le recouvrement döun cercle par des arcs disposés au hasardC. R. Acad. Sci. Paris248 (1956),184186.Google Scholar
[19]Kahane,J.-P.Some random series of functionsCamb. Stud. Adv. Math. 5 (Cambridge University Press,1985).Google Scholar
[20]Li,B.,Shieh,N.R. andXiao,Y.Hitting probability and packing dimensions of the random covering sets. In:Applications of Fractals and Dynamical Systems in Science and Economics (Carfi,David,Lapidus,Michel L.,Pearse,Erin P. J. andvan Frankenhuijsen,Machiel, editors). Amer. math. soc. (2013).Google Scholar
[21]Ojala,T.,Suomala,V. andWu,M. Random cutout sets with spatially inhomogeneous intensities.Preprint2015.Google Scholar
[22]Olsen,L.A multifractal formalism.Adv. Math.116 (1995),92195.Google Scholar
[23]Persson,T.A note on random coverings of Tori.Bull. London Math. Soc.47(1) (2015),712.Google Scholar
[24]Ruelle,D.Thermodynamic formalism. The mathematical structures of classical equilibrium statistical mechanics.Encyclopedia of Mathematics and its Applications 5 (Addison-Wesley Publishing Co.,Reading, Mass.,1978).Google Scholar
[25]Shepp,L.Covering the circle with random arcs.Israel J. Math.11 (1972),328345.Google Scholar
[26]Tang,J. M.Random coverings of the circle with i.i.d. centers.Sci. China Math.55(6) (2015),12571268.Google Scholar
[27]Tang,J. M.Hausdorff dimension of sets arising from Dvoretzky random covering.Acta. Mat. Sin.57(1) (2014).Google Scholar