Hostname: page-component-5cf477f64f-54txb Total loading time: 0 Render date: 2025-03-29T20:29:45.567Z Has data issue: false hasContentIssue false
  • English
  • Français

Modeling Atmospheric14C Influences and14C Ages of Marine Samples to 10,000 BC

Published online by Cambridge University Press: 18 July 2016

Minze Stuiver
Affiliation:
Department of Geological Sciences, Quaternary Research Center, and Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, Washington 98195 USA
Thomas F. Braziunas
Affiliation:
Department of Geological Sciences, Quaternary Research Center, and Joint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, Washington 98195 USA
Save PDF (4 mb)View PDF[Opens in a new window]
Rights & Permissions[Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The detailed radiocarbon agevs. calibrated (cal) age studies of tree rings reported in this Calibration Issue provide a unique data set for precise14C age calibration of materials formed in isotopic equilibrium with atmospheric CO2. The situation is more complex for organisms formed in other reservoirs, such as lakes and oceans. Here the initial specific14C activity may differ from that of the contemporaneous atmosphere. The measured remaining14C activity of samples formed in such reservoirs not only reflects14C decay (related to sample age) but also the reservoir14C activity. As the measured sample14C activity figures into the calculation of a conventional14C age (Stuiver & Polach 1977), apparent14C age differences occur when contemporaneously grown samples of different reservoirs are dated.

Type
Articles
Copyright
Copyright © The American Journal of Science 

References

Adams,J. M.,Faure,H.,Faure-Denard,L.,McGlade,J. M. andWoodward,F. I.1990Increases in terrestrial carbon storage from the Last Glacial Maximum to the present.Nature348:711714.CrossRefGoogle Scholar
Alley,R. B.,Meese,,Shuman,C. A.,Gow,A. J.,Taylor,K.,Ram,M.,Waddington,E. D. andMayewski,P. A.1993An old, long, abrupt Younger Dryas event in the GISP2 ice core.Nature, in press.Google Scholar
Andrée,M.,Beer,J.,Loetscher,H. P.,Moor,E.,Oeschger,H.,Bonani,G.,Hofmann,H. J.,Suter,M.,Wölfli,W. andPeng,T. H.1986Limits on the ventilation rate for the deep ocean over the last 12000 years.Climate Dynamics1:5362.CrossRefGoogle Scholar
Bard,E.1988Correction of accelerator mass spectrometry14C ages measured in planktonic foraminifera: Paleoceanographic implications.Paleoceanography3:635645.CrossRefGoogle Scholar
Bard,E.,Arnold,M.,Fairbanks,R.G. andHamelin,B.1993230Th/234U and14C ages obtained by mass spectrometry on corals.Radiocarbon, this issue.Google Scholar
Bard,E.,Hamelin,B.,Fairbanks,R. G. andZindler,A.1990Calibration of the14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals.Nature345:405410.CrossRefGoogle Scholar
Becker,B.,Kromer,B. andTrimborn,P.1991A stable isotope tree-ring timescale of the Late Glacial/Holocene boundary.Nature353:647649.CrossRefGoogle Scholar
Bouey,P. D. andBasgall,M. E.1991Archaeological patterns along the South-central coast, Point Piedras Blancas, San Luis Obispo County, California.California Department of Transportation 05-SLO-1:3948.Google Scholar
Braziunas,T. F.1990Nature and origin of variations in late-glacial and Holocene atmospheric14C as revealed by global carbon cycle modeling. Ph.D. dissertation, University of Washington, Seattle.Google Scholar
Broecker,W. S. andDenton,G. H.1989.The role of ocean-atmosphere reorganizations in glacial cycles.Geochimica et Cosmochimica Acta53:24652501.CrossRefGoogle Scholar
Broecker,W. S.,Takahashi,T.,Simpson,H. J. andPeng,T.-H.1979Fate of fossil fuel carbon dioxide and the global carbon budget.Science206:409418.CrossRefGoogle ScholarPubMed
Charles,C. D. andFairbanks,R. G.1992Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate.Nature355:416419.CrossRefGoogle Scholar
Damon,P. E.1988Production and decay of radiocarbon and its modulation by geomagnetic field-solar activity changes with possible implications for global environment.inStephenson,F. R. andWolfendale,A. W., eds.,Secular Solar and Geomagnetic Variations in the Last 10,000 Years.Dordrecht,The Netherlands, Kluwer Academic Publishers:267285.CrossRefGoogle Scholar
Fairbanks,R. G.1990The age and origin of the “Younger Dryas climate event” in Greenland ice cores.Paleoceanography5:937948.CrossRefGoogle Scholar
Keeling,C. D.1973The carbon dioxide cycle: Reservoir models to depict the exchange of atmospheric carbon dioxide with the oceans and land plants.inRasool,S. I., ed.,Chemistry of the Lower Atmosphere.New York,Plenum Press:251329.CrossRefGoogle Scholar
Kromer,B. andBecker,B.1993German oak and pine14C calibration, 7200 BC-9400 BC.Radiocarbon, this issue.CrossRefGoogle Scholar
Lassey,K. R.,Manning,M. R. andO'Brien,B. J.1990An overview of oceanic radiocarbon: Its inventory and dynamics.Reviews in Aquatic Sciences3:117146.Google Scholar
Lehman,S. L. andKeigwin,L. D.1992Sudden changes in North Atlantic circulation during the last deglaciation.Nature356:757762.CrossRefGoogle Scholar
Lingenfelter,R. E. andRamaty,R.1970Astrophysical and geophysical variations in14C production.inOlsson,I. U., ed.,Radiocarbon Variations and Absolute Chronology. Proceedings of the 12th Nobel Symposium. New York, John Wiley & Sons:513537.Google Scholar
Mazaud,A.,Laj,C.,Bard,E.,Arnold,M. andTric,E.1991Geomagnetic field control of14C production over the last 80 ky: Implications for the radiocarbon timescale.Geophysical Research Letters18:18851888.CrossRefGoogle Scholar
McFadgen,B. andManning,M. R.1990Calibrating New Zealand radiocarbon dates of marine shells.Radiocarbon32(2):229232.CrossRefGoogle Scholar
Oeschger,H.,Siegenthaler,U.,Schotterer,U. andGugelmann,A.1975A box diffusion model to study the carbon dioxide exchange in nature.Tellus27:168192.CrossRefGoogle Scholar
Pearson,G. W.,Becker,B. andQua,F.1993High-precision14C measurement of German oaks to show the natural14C variations from 7890 to 5000 BC.Radiocarbon, this issue.CrossRefGoogle Scholar
Pearson,G. W. andStuiver,M.1993High-precision bidecadal calibration of the radiocarbon time scale 500-2500 BC.Radiocarbon, this issue.CrossRefGoogle Scholar
Rozanski,K.,Goslar,T.,Dulinski,M.,Kuc,T.,Pazdur,M. F. andWalanus,A.1992The Late Glacial-Holocene transition in central Europe derived from isotope studies of laminated sediments from Lake Gosciaz (Poland),inThe Late Glacial-Holocene transition in central Europe derived from isotope studies of laminated sediments from Lake Gosciaz (Poland),. andBroecker,W. S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. NATO ASI Series I-2.Heidelberg,Springer Verlag:6980.Google Scholar
Shackleton,N. J.,Duplessy,J.-C.,Arnold,M.,Maurice,P.,Hall,M. A. andCartlidge,J.1988Radiocarbon age of last glacial Pacific deep water.Nature335:708711.CrossRefGoogle Scholar
Siegenthaler,U. andMünnich,K. O.198113C/12C fractionation during CO2 transfer from air to sea.inBolin,B., ed.,Carbon Cycle Modeling: SCOPE 16.New York,John Wiley & Sons:249257.Google Scholar
Soares,A. M. M.1989O efeito de reservatório oceânico nas águas costeiras de Portugal continental.ICEN-LNETI, Dept. de Quimica:135 pp.Google Scholar
Southon,J. R.,Nelson,D. E. andVogel,J. S.1990A record of past ocean-atmosphere radiocarbon differences from the Northeast Pacific.Paleoceanography5:197206.CrossRefGoogle Scholar
Stuiver,M. andBraziunas,T. F.1989Atmospheric14C and century-scale solar oscillations.Nature338:405408.CrossRefGoogle Scholar
Stuiver,M.,Braziunas,T. F.,Becker,B. andKromer,B.1991Climatic, solar, oceanic, and geomagnetic influences on late-glacial and Holocene atmospheric14C/12C change.Quaternary Research35:124.CrossRefGoogle Scholar
Stuiver,M. andPearson,G. W.1993High-precision calibration of the radiocarbon time scale, AD 1950-500 BC and 2500-6000 BC.Radiocarbon, this issue.CrossRefGoogle Scholar
Stuiver,M.,Pearson,G. W. andBraziunas,T.F.1986Radiocarbon age calibration of marine samples back to 9000 cal yr BP.inStuiver,M. andKra,R. S., eds., Proceedings of the 12th International14C Conference.Radiocarbon28(2B):9801021.CrossRefGoogle Scholar
Stuiver,M. andPolach,H. A.1977Discussion: Reporting of14C data.Radiocarbon19(3):355363.CrossRefGoogle Scholar
Stuiver,M. andReimer,P. J.1993Extended14C data base and revised CALIB 3.0 radiocarbon age calibration program.Radiocarbon, this issue.CrossRefGoogle Scholar
Talma,A. S.1990Radiocarbon age calibration of marine shells.Quarterly Report, Quaternary Dating Research Unit.Pretoria,CSIR:10 pp.Google Scholar
Toggweiler,J. R. andSarmiento,J. L.1985Glacial to interglacial changes in atmospheric carbon dioxide: The critical role of ocean surface water in high latitudes.inSundquist,E. T. andBroecker,W. S., eds.,The Carbon Cycle and Atmospheric CO2: -Natural Variations Archean to Present.Washington D.C.,American Geophysical Union. Geophysical Monograph32:163184.Google Scholar
Vogel,J. C.,Fuls,A.,Visser,E. andBecker,B.1993Pretoria calibration curve for short-lived samples, 1930-3350 BC.Radiocarbon, this issue.CrossRefGoogle Scholar
You have Access