Hostname: page-component-5cf477f64f-54txb Total loading time: 0 Render date: 2025-03-26T15:25:31.090Z Has data issue: false hasContentIssue false
  • English
  • Français

Spatial distribution ofAlitta virens burrows in intertidal sediments studied by axial tomodensitometry

Published online by Cambridge University Press: 03 May 2013

Flora Salvo
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
Suzanne C. Dufour*
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
Philippe Archambault
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
Georges Stora
Affiliation:
Aix-Marseille Université, UMR CNRS 7294, Mediterranean Institute of Oceanography, 13288 Marseille Cedex 09, France
Gaston Desrosiers
Affiliation:
Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski QC, CanadaG5L 3A1
*
Correspondence should be addressed to: S.C. Dufour,Department of Biology, Memorial University of Newfoundland, St John's, NL Canada A1B 3X9 email:sdufour@mun.ca

Abstract

Relationships between sediment characteristics and the spatial organization of biogenic structures remain poorly understood, albeit important for characterizing bioturbation impacts and small-scale ecological patterns. Using axial tomodensitometry (CT-scan) and core sectioning, we studied the spatial distribution ofAlitta virens burrows in sediment cores from two mudflats with different degrees of exposure along the St Lawrence Estuary, Canada. A variety of burrow morphologies was observed at both sites, with most being I-shaped. Most values measured (organic matter content, mean tomographic intensity, the number and diameter of burrow shafts and the percentage of space they occupy per transverse section) covaried with depth. The more sheltered site had higher organic matter and mud contents, and lower average tomographic intensity values. The spatial distribution of burrow shafts also differed between sites, with the more sheltered site having a higher number of burrow shafts and percentage of biogenic space in the upper sediment column, as well as a greater volume of biogenic structures that were connected to the surface (although intra-site variability was great). Along the horizontal plane and at various depths within sediments, burrow shafts were more randomly distributed at the exposed site, compared to a more even, maximal spacing at the sheltered site. In addition to finding differences in burrow organization at two spatial scales, we found significant correlations between tomographic intensity and (1) the number of burrow shafts, (2) biogenic space and (3) organic matter content. CT-scan data, including tomographic intensity, are useful for examining and comparing biogenic structures in sediment cores.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramoff,M.D.,Magalhaes,P.J. andRam,S.J. (2004)Image processing with ImageJ.Biophotonics International11,3642.Google Scholar
Aller,J.C. andYingst,J.Y. (1978)Biogeochemistry of tube-dwellings: a study of the sedentary polychaeteAmphitrite ornata (Leidy).Journal of Marine Research36,201254.Google Scholar
Anderson,D.J. andKendziorek,M. (1982)Spacing patterns in terebellid polychaetes.Journal of Experimental Marine Biology and Ecology58,193205.CrossRefGoogle Scholar
Andrew,N.L. andMapstone,B.D. (1987)Sampling and the description of spatial pattern in marine ecology.Oceanography and Marine Biology: an Annual Review25,3990.Google Scholar
Andzhon,A.S. andPopov,A.V. (1979)Sensitivity ofNereis virens polychaetes to mechanical oscillations in water.Journal of Evolutionary Biochemistry and Physiology15,283287.Google Scholar
Bakken,T. andWilson,R.S. (2005)Phylogeny of nereidids (Polychaeta, Nereididae) with paragnaths.Zoologica Scripta34,507547.CrossRefGoogle Scholar
Boespflug,X.,Long,B.F.N. andOcchietti,S. (1995)CAT-scan in marine stratigraphy: a quantitative approach.Marine Geology122,281301.CrossRefGoogle Scholar
Brenchley,G.A. (1982)Mechanisms of spatial competition in marine soft-bottom communities.Journal of Experimental Marine Biology and Ecology60,1733.CrossRefGoogle Scholar
Butler,S. andBird,F.L. (2007)Estimating density of intertidal ghost shrimps using counts of burrow openings. Is the method reliable?Hydrobiologia589,303314.CrossRefGoogle Scholar
Clark,P.J. andEvans,F.C. (1954)Distance to nearest neighbor as a measure of spatial relationships in populations.Ecology35,445453.CrossRefGoogle Scholar
Commito,J.A. andShrader,P.B. (1985)Benthic community response to experimental additions of the polychaeteNereis virens.Marine Biology86,101107.CrossRefGoogle Scholar
Crémer,J.-F.,Long,B.,Desrosiers,G.,De Montety,L. andLocat,J. (2002)Application de la scanographie à l'étude de la densité des sédiments et à la caractérisation des structures sédimentaires: exemple des sédiments déposés dans la rivière Saguenay (Québec, Canada) après la crue de juillet 1996.Canadian Geotechnical Journal39,440450.CrossRefGoogle Scholar
Dashtgard,S.E.,Gingras,M.K. andPemberton,S.G. (2008)Grain-size controls on the occurrence of bioturbation.Palaeogeography, Palaeoclimatology, Palaeoecology257,224243.CrossRefGoogle Scholar
Davey,J.T. (1994)The architecture of the burrow ofNereis diversicolor and its quantification in relation to sediment–water exchange.Journal of Experimental Marine Biology and Ecology179,115129.CrossRefGoogle Scholar
De Montety,L.,Long,B.,Desrosiers,G.,Crémer,J.-F.,Locat,J. andStora,G. (2003)Utilisation de la scanographie pour l'étude des sédiments: influence des paramètres physiques, chimiques et biologiques sur la mesure des intensités tomographiques.Canadian Journal of Earth Sciences40,937948.CrossRefGoogle Scholar
Desrosiers,G. andBrêthes,J.-C. (1984)Etude bionomique de la communauté àMacoma balthica de la batture de Rimouski.Sciences et Techniques de l'Eau17,2530.Google Scholar
Desrosiers,G.,Brêthes,J.-C. andCoulombe,F. (1980)Etude bionomique de l'endofaune benthique de substrat meuble de la baie de Saint-Fabien-sur-Mer (Québec).Les cahiers de la SOUQAR, Rimouski, no. 6, 41 pp.Google Scholar
Dufour,S.C.,Desrosiers,G.,Long,B.,Lajeunesse,P.,Gagnoud,M.,Labrie,J.,Archambault,P. andStora,G. (2005)A new method for three-dimensional vizualisation and quantification of biogenic structures in aquatic sediments using axial tomodensitometry.Limnology and Oceanography: Methods3,372380.Google Scholar
Duliu,O.G. (1999)Computer axial tomography in geosciences: an overview.Earth-Science Reviews48,265281.CrossRefGoogle Scholar
Dworschak,P.C. (1983)The biology ofUpogebia pusilla (Petagna) (Decapoda, Thalassinidea) I. The burrows.Marine Ecology4,1943.CrossRefGoogle Scholar
François,F.,Dalègre,K.,Gilbert,F. andStora,G. (1999)Variabilité spécifique à l'intérieur des groupes fonctionnels. Étude du remaniement sédimentaire de deux bivalves Veneridae,Ruditapes decussatus etVenerupis aurea.Comptes Rendus de l'Académie des Sciences de Paris, Sciences de la Vie322,339345.Google Scholar
François,F.,Gerino,M.,Stora,G.,Durbec,J.-P. andPoggiale,J.-C. (2002)Functional approach to sediment reworking by gallery-forming macrobenthic organisms: modeling and application with the polychaeteNereis diversicolor.Marine Ecology Progress Series229,127136.CrossRefGoogle Scholar
Gagnoud,M.,Lajeunesse,P.,Desrosiers,G.,Long,B.,Dufour,S.,Labrie,J.,Mermillod-Blondin,F. andStora,G. (2009)Litho- and biofacies analysis of postglacial marine mud using CT-scanning.Engineering Geology103,106111.CrossRefGoogle Scholar
Gerino,M.,Stora,G.,François-Carcaillet,F.,Gilbert,F.,Poggiale,J.-C.,Mermillod-Blondin,F.,Desrosiers,G. andVervier,P. (2003)Macro-invertebrate functional groups in freshwater and marine sediments: a common mechanistic classification.Vie et Milieu53,221231.Google Scholar
Gingras,M.K.,Pemberton,S.G.,Dashtgard,S. andDafoe,L. (2008)How fast do marine invertebrates burrow?Palaeogeography, Palaeoclimatology, Palaeoecology270,280286.CrossRefGoogle Scholar
Heiri,O.,Lotter,A.F. andLemcke,G. (2001)Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results.Journal of Paleolimnology25,101110.CrossRefGoogle Scholar
Herringshaw,L.G.,Sherwood,O.A. andMcIlroy,D. (2010)Ecosystem engineering by bioturbating polychaetes in event bed microcosms.Palaios25,4658.CrossRefGoogle Scholar
Hounsfield,G.N. (1973)Computerized transverse axial scanning (tomography): Part 1. Description of system.British Journal of Radiology46,10161022.CrossRefGoogle Scholar
Krantzberg,G. (1985)The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review.Environmental Pollution Series A, Ecological and Biological39,99122.CrossRefGoogle Scholar
Kristensen,E. (1984)Effect of natural concentrations on nutrient exchange between a polychaete burrow in estuarine sediment and the overlying water.Journal of Experimental Marine Biology and Ecology75,171190.CrossRefGoogle Scholar
Kristensen,E. (1985)Oxygen and inorganic nitrogen exchange in a ‘Nereis virens’ (Polychaeta) bioturbated sediment–water system.Journal of Coastal Research1,109116.Google Scholar
Kristensen,E.,Penha-Lopes,G.,Delefosse,M.,Valdemarsen,T.,Quintana,C.O. andBanta,G.T. (2012)What is bioturbation? The need for a precise definition for fauna in aquatic sciences.Marine Ecology Progress Series446,285302.CrossRefGoogle Scholar
Mermillod-Blondin,F.,Marie,S.,Desrosiers,G.,Long,B.,de Montety,L.,Michaud,E. andStora,G. (2003)Assessment of the spatial variability of intertidal benthic communities by axial tomodensitometry: importance of fine-scale heterogeneity.Journal of Experimental Marine Biology and Ecology287,193208.CrossRefGoogle Scholar
Mermillod-Blondin,F.,Rosenberg,R.,Francois-Carcaillet,F.,Norling,K. andMauclaire,L. (2004)Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment.Aquatic Microbial Ecology36,271284.CrossRefGoogle Scholar
Michaud,E.,Desrosiers,G.,Long,B.,de Montety,L.,Crémer,J.-F.,Pelletier,E.,Locat,J.,Gilbert,F. andStora,G. (2003)Use of axial tomography to follow temporal changes of benthic communities in an unstable sedimentary environment (Baie des Ha! Ha!, Saguenay Fjord).Journal of Experimental Marine Biology and Ecology285/286, 265–282.Google Scholar
Michaud,E.,Desrosiers,G.,Mermillod-Blondin,F.,Sundby,B. andStora,G. (2005)The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of theMacoma balthica community on sediment oxygen uptake.Journal of Experimental Marine Biology and Ecology326,7788.CrossRefGoogle Scholar
Miron,G.Y. andDesrosiers,G.L. (1990)Distributions and population structures of two intertidal estuarine polychaetes in the lower St Lawrence estuary, with special reference to environmental factors.Marine Biology105,297306.CrossRefGoogle Scholar
Miron,G.,Desrosiers,G.,Retière,C. andLambert,R. (1991a)Dispersion and prospecting behaviour of the polychaeteNereis virens (Sars) as a function of density.Journal of Experimental Marine Biology and Ecology145,6577.CrossRefGoogle Scholar
Miron,G.,Desrosiers,G.,Retière,C. andLambert,R. (1991b)Evolution spatio-temporelle du réseau de galeries chez le polychèteNereis virens (Sars).Canadian Journal of Zoology69,3942.CrossRefGoogle Scholar
Ouellette,D.,Desrosiers,G.,Gagné,J.-P.,Gilbert,F.,Poggiale,J.-C.,Blier,P.U. andStora,G. (2004)Effects of temperature onin vitro sediment reworking processes by a gallery biodiffusor, the polychaeteNeanthes virens.Marine Ecology Progress Series266,185193.CrossRefGoogle Scholar
Papaspyrou,S.,Gregersen,T.,Kristensen,E.,Christensen,B. andCox,R. (2006)Microbial reaction rates and bacterial communities in sediment surrounding burrows of two nereidid polychaetes (Nereis diversicolor andN. virens).Marine Biology148,541550.CrossRefGoogle Scholar
Piot,A.,Rochon,A.,Stora,G. andDesrosiers,G. (2008)Experimental study on the influence of bioturbation performed byNephtys caeca (Fabricius) andNereis virens (Sars) annelidae on the distribution of dinoflagellate cysts in the sediment.Journal of Experimental Marine Biology and Ecology359,92101.CrossRefGoogle Scholar
Pralle,N.,Bahner,M.L. andBenkler,J. (2001)Computer tomographic analysis of undisturbed samples of loose sands.Canadian Geotechnical Journal38,770781.CrossRefGoogle Scholar
Quinn,G.P. andKeough,M.J. (2002)Experimental design and data analysis for biologists.Cambridge:Cambridge University Press.CrossRefGoogle Scholar
Reise,K. (1981)High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea.Helgoland Marine Research34,413425.Google Scholar
Renaud,L. (2000)Evolution et dégradation du barachois de Paspébiac. MSc thesis.Université du Québec à Rimouski,Canada.Google Scholar
Risk,M.J.,Venter,R.D.,Pemberton,S.G. andBuckley,D.E. (1978)Computer simulation and sedimentological implications of burrowing byAxius serratus.Canadian Journal of Earth Sciences15,13701374.CrossRefGoogle Scholar
Rosenberg,R.,Davey,E.,Gunnarsson,J.,Norling,K. andFrank,M. (2007)Application of computer-aided tomography to visualize and quantify biogenic structures in marine sediments.Marine Ecology Progress Series331,2334.CrossRefGoogle Scholar
Rosenberg,R.,Grémare,A.,Duchêne,J.C.,Davey,E. andFrank,M. (2008)3D visualization and quantification of marine benthic biogenic structures and particle transport utilizing computer-aided tomography.Marine Ecology Progress Series363,171182.CrossRefGoogle Scholar
Simberloff,C. (1979)Nearest neighbor assessments of spatial configurations of circles rather than points.Ecology60,679685.CrossRefGoogle Scholar
Underwood,A.J. (1997)Experiments in ecology: their logical design and interpretation using analysis of variance.Cambridge:Cambridge University Press.Google Scholar
Wethey,D.S. andWoodin,S.A. (2005)Infaunal hydraulics generate porewater pressure signals.Biological Bulletin. Marine Biological Laboratory, Woods Hole209,139145.CrossRefGoogle ScholarPubMed
Zorn,M.E.,Gingras,M.K. andPemberton,S.G. (2010)Variation in burrow-wall micromorphologies of select intertidal invertebrates along the Pacific Northwest coast, USA: behavioral and diagenetic implications.Palaios25,5972.CrossRefGoogle Scholar