Abeyesinghe,A (2006), ‘Unification of Quantum Information Theory’, PhD thesis, California Institute of Technology.
Abeyesinghe,A.,Devetak,I,Hayden,P &Winter,A (2009), ‘The mother of all protocols: Restructuring quantum information's family tree ’,Proceedings of the Royal Society A465(2108), 2537–2563. arXiv:quant-ph/0606225.
Abeyesinghe,A &Hayden,P (2003), ‘Generalized remote state preparation: Trading cbits, qubits, and ebits in quantum communication’,Physical Review A68(6), 062319. arXiv:quant-ph/0308143.
Adami,C &Cerf,N. J (1997), ‘von Neumann capacity of noisy quantum channels’,Physical Review A56(5), 3470–3483. arXiv:quant-ph/9609024.
Aharonov,D &Ben-Or,M. (1997), ‘Fault-tolerant quantum computation with constant error’, inSTOC ‘97: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, ACM,New York, NY, pp. 176–188. arXiv:quant-ph/9906129.
Ahlswede,R &Winter,A (2002), ‘Strong converse for identification via quantum channels’,IEEE Transactions on Information Theory48(3), 569–579. arXiv:quantph/0012127.
Ahn,C.,Doherty,A,Hayden,P &Winter,A (2006), ‘On the distributed compression of quantum information’,IEEE Transactions on Information Theory52(10), 4349–4357. arXiv:quant-ph/0403042.
Alicki,R &Fannes,M (2004), ‘Continuity of quantum conditional information’,Journal of Physics A: Mathematical and General37(5), L55–L57. arXiv:quantph/ 0312081.
Araki,H &Lieb,E. H (1970), ‘Entropy inequalities’,Communications in Mathematical Physics18(2), 160–170.
Aspect,A.,Grangier,P &Roger,G (1981), ‘Experimental tests of realistic local theories via Bell's theorem’,Physical Review Letters47(7), 460–463.
Aubrun,G.,Szarek,S &Werner,E (2011), ‘Hastings’ additivity counterexample via Dvoretzky's theorem',Communications in Mathematical Physics305(1), 85–97. arXiv:1003.4925.
Audenaert,K.,De Moor,B,Vollbrecht,K. G. H. &Werner,R. F (2002), ‘Asymptotic relative entropy of entanglement for orthogonally invariant states’,Physical ReviewA66(3), 032310. arXiv:quant-ph/0204143.
Audenaert,K.M. R. (2007), ‘A sharp continuity estimate for the von Neumann entropy’,Journal of Physics A: Mathematical and Theoretical40(28), 8127. arXiv:quant-ph/0610146.
Bardhan,B.R.,Garcia-Patron,R,Wilde,M. M &Winter,A (2015), ‘Strong converse for the classical capacity of all phase-insensitive bosonic Gaussian channels’,IEEETransactions on Information Theory61(4), 1842–1850. arXiv:1401.4161.
Barnum,H.,Caves,C. M,Fuchs,C. A,Jozsa,R &Schumacher,B (2001), ‘On quantum coding for ensembles of mixed states’,Journal of Physics A: Mathematical and General34(35), 6767. arXiv:quant-ph/0008024.
Barnum,H.,Hayden,P,Jozsa,R &Winter,A (2001), ‘On the reversible extraction of classical information from a quantum source’,Proceedings of the Royal Society A457(2012), 2019–2039. arXiv:quant-ph/0011072.
Barnum,H &Knill,E (2002), ‘Reversing quantum dynamics with near-optimal quantum and classical fidelity’,Journal of Mathematical Physics43(5), 2097–2106. arXiv:quant-ph/0004088.
Barnum,H.,Knill,E &Nielsen,M. A (2000), ‘On quantum fidelities and channel capacities’,IEEE Transactions on Information Theory46(4), 1317–1329. arXiv:quant-ph/9809010.
Barnum,H.,Nielsen,M. A &Schumacher,B (1998), ‘Information transmission through a noisy quantum channel’,Physical Review A57(6), 4153–4175.
Beigi,S.,Datta,N &Leditzky,F (2015), ‘Decoding quantum information via the Petz recovery map’. arXiv:1504.04449.
Bell,J.S. (1964), ‘On the Einstein–Podolsky–Rosen paradox’,Physics1, 195–200.
Bennett,C.H. (1992), ‘Quantum cryptography using any two nonorthogonal states’,Physical Review Letters68(21), 3121–3124.
Bennett,C.H. (1995), ‘Quantum information and computation’,Physics Today48(10), 24–30.
Bennett,C.H. (2004), ‘A resource-based view of quantum information’,Quantum Information and Computation4, 460–466.
Bennett,C.H.,Bernstein,H. J,Popescu,S &Schumacher,B (1996), ‘Concentrating partial entanglement by local operations’,Physical Review A53(4), 2046–2052. arXiv:quant-ph/9511030.
Bennett,C.H. &Brassard,G (1984), ‘Quantum cryptography: Public key distribution and coin tossing’, inProceedings of IEEE International Conference on Computers Systems and Signal Processing,Bangalore, India, pp. 175–179.
Bennett,C.H.,Brassard,G,Crépeau,C,Jozsa,R,Peres,A &Wootters,W. K (1993), ‘Teleporting an unknown quantum state via dual classical and Einstein– Podolsky–Rosen channels’,Physical Review Letters70(13), 1895–1899.
Bennett,C.H.,Brassard,G &Ekert,A. K (1992), ‘Quantum cryptography’,Scientific American, 50–57.
Bennett,C.H.,Brassard,G &Mermin,N. D (1992), ‘Quantum cryptography without Bell's theorem’,Physical Review Letters68(5), 557–559.
Bennett,C.H.,Brassard,G,Popescu,S,Schumacher,B,Smolin,J. A &Wootters,W. K (1996), ‘Purification of noisy entanglement and faithful teleportation via noisy channels’,Physical Review Letters76(5), 722–725. arXiv:quant-ph/9511027.
Bennett,C.H.,Devetak,I,Harrow,A. W,Shor,P. W &Winter,A (2014), ‘The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels’,IEEE Transactions on Information Theory60(5), 2926–2959. arXiv:0912.5537.
Bennett,C.H.,DiVincenzo,D. P.,Shor,P.W.,Smolin,J. A,Terhal,B. M &Wootters,W. K (2001), ‘Remote state preparation’,Physical Review Letters87(7), 077902.
Bennett,C.H.,DiVincenzo,D. P &Smolin,J. A (1997), ‘Capacities of quantum erasure channels’,Physical Review Letters78(16), 3217–3220. arXiv:quant-ph/9701015.
Bennett,C.H.,DiVincenzo,D. P,Smolin,J. A &Wootters,W. K. (1996), ‘Mixed-state entanglement and quantum error correction’,Physical Review A54(5), 3824–3851. arXiv:quant-ph/9604024.
Bennett,C.H.,Harrow,A. W &Lloyd,S (2006), ‘Universal quantum data compression via nondestructive tomography’,Physical Review A73(3), 032336. arXiv:quant-ph/0403078.
Bennett,C.H.,Hayden,P,Leung,D. W,Shor,P. W &Winter,A (2005), ‘Remote preparation of quantum states’,IEEE Transactions on Information Theory51(1), 56–74. arXiv:quant-ph/0307100.
Bennett,C.H.,Shor,P. W,Smolin,J. A &Thapliyal,A. V (1999), ‘Entanglementassisted classical capacity of noisy quantum channels’,Physical Review Letters83(15), 3081–3084. arXiv:quant-ph/9904023.
Bennett,C.H.,Shor,P. W,Smolin,J. A &Thapliyal,A. V (2002), ‘Entanglementassisted capacity of a quantum channel and the reverse Shannon theorem’,IEEETransactions on Information Theory48(10), 2637–2655. arXiv:quant-ph/0106052.
Bennett,C.H. &Wiesner,S. J (1992), ‘Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states’,Physical Review Letters69(20), 2881–2884.
Berger,T (1971),Rate Distortion Theory: A Mathematical Basis for Data Compression, Prentice-Hall,Englewood Cliffs, NJ.
Berger,T (1977), ‘Multiterminal source coding’,The Information Theory Approach to Communications, Springer-Verlag,New York, NY.
Bergh,J &Lofstrom,J. (1976),Interpolation Spaces, Springer-Verlag,Heidelberg.
Berta,M.,Brandao,F.G. S. L.,Christandl,M. &Wehner,S (2013), ‘Entanglement cost of quantum channels’,IEEE Transactions on Information Theory59(10), 6779–6795. arXiv:1108.5357.
Berta,M.,Christandl,M,Colbeck,R,Renes,J. M &Renner,R (2010), ‘The uncertainty principle in the presence of quantum memory’,Nature Physics6, 659–662. arXiv:0909.0950.
Berta,M.,Christandl,M &Renner,R (2011), ‘The quantum reverse Shannon theorem based on one-shot information theory’,Communications in Mathematical Physics306(3), 579–615. arXiv:0912.3805.
Berta,M.,Lemm,M &Wilde,M. M (2015), ‘Monotonicity of quantum relative entropy and recoverability’,Quantum Information and Computation15(15&16), 1333–1354. arXiv:1412.4067.
Berta,M.,Renes,J. M &Wilde,M. M (2014), ‘Identifying the information gain of a quantum measurement’,IEEE Transactions on Information Theory60(12), 7987–8006. arXiv:1301.1594.
Berta,M.,Seshadreesan,K &Wilde,M. M (2015), ‘Rényi generalizations of the conditional quantum mutual information’,Journal of Mathematical Physics56(2), 022205. arXiv:1403.6102.
Berta,M &Tomamichel,M (2016), ‘The fidelity of recovery is multiplicative’,IEEETransactions on Information Theory62(4), 1758–1763. arXiv:1502.07973.
Bhatia,R (1997),Matrix Analysis, Springer-Verlag,Heidelberg.
Blume-Kohout,R.,Croke,S &Gottesman,D (2014), ‘Streaming universal distortionfree entanglement concentration’,IEEE Transactions on Information Theory60(1), 334–350. arXiv:0910.5952.
Boche,H &Notzel,J (2014), ‘The classical–quantum multiple access channel with conferencing encoders and with common messages’,Quantum Information Processing13(12), 2595–2617. arXiv:1310.1970.
Bohm,D (1989),Quantum Theory, Courier Dover Publications.
Bowen,G (2004), ‘Quantum feedback channels’,IEEE Transactions on Information Theory50(10), 2429–2434. arXiv:quant-ph/0209076.
Bowen,G &Nagarajan,R (2005), ‘On feedback and the classical capacity of a noisy quantum channel’,IEEE Transactions on Information Theory51(1), 320–324. arXiv:quant-ph/0305176.
Boyd,S &Vandenberghe,L (2004),Convex Optimization, Cambridge University Press,Cambridge, UK.
Brádler,K.,Hayden,P,Touchette,D &Wilde,M. M (2010), ‘Trade-off capacities of the quantum Hadamard channels’,Physical Review A81(6), 062312. arXiv:1001.1732.
Brandao,F.G.S. L.,Christandl,M &Yard,J (2011), ‘Faithful squashed entanglement’,Communications in Mathematical Physics306(3), 805–830. arXiv:1010.1750.
Brandao,F.G.S. L.,Harrow,A. W,Oppenheim,J &Strelchuk,S (2014), ‘Quantum conditional mutual information, reconstructed states, and state redistribution’,Physical Review Letters115(5), 050501. arXiv:1411.4921.
Brandao,F.G.S. L. &Horodecki,M (2010), ‘On Hastings’ counterexamples to the minimum output entropy additivity conjecture',Open Systems & Information Dynamics17(1), 31–52. arXiv:0907.3210.
Braunstein,S.L.,Fuchs,C. A,Gottesman,D &Lo,H.-K. (2000), ‘A quantum analog of Huffman coding’,IEEE Transactions on Information Theory46(4), 1644–1649. arXiv:quant-ph/9805080.
Brun,T.A. (n.d.), ‘Quantum information processing course lecture slides’, http://almaak.usc.edu/∼tbrun/Course/.
Burnashev,M.V. &Holevo,A. S (1998), ‘On reliability function of quantum communication channel’,Probl. Peredachi Inform.34(2), 1–13. arXiv:quant-ph/9703013.
Buscemi,F &Datta,N (2010), ‘The quantum capacity of channels with arbitrarily correlated noise’,IEEE Transactions on Information Theory56(3), 1447–1460. arXiv:0902.0158.
Cai,N.,Winter,A &Yeung,R. W (2004), ‘Quantum privacy and quantum wiretap channels’,Problems of Information Transmission40(4), 318–336.
Calderbank,A.R.,Rains,E. M,Shor,P. W &Sloane,N.J.A. (1997), ‘Quantum error correction and orthogonal geometry’,Physical Review Letters78(3), 405–408. arXiv:quant-ph/9605005.
Calderbank,A.R.,Rains,E. M,Shor,P. W &Sloane,N.J.A. (1998), ‘Quantum error correction via codes over GF(4)’,IEEE Transactions on Information Theory44(4), 1369–1387. arXiv:quant-ph/9608006.
Calderbank,A.R. &Shor,P. W (1996), ‘Good quantum error-correcting codes exist’,Physical Review A54(2), 1098–1105. arXiv:quant-ph/9512032.
Carlen,E.A. &Lieb,E. H (2014), ‘Remainder terms for some quantum entropy inequalities’,Journal of Mathematical Physics55(4), 042201. arXiv:1402.3840.
Cerf,N.J. &Adami,C (1997), ‘Negative entropy and information in quantum mechanics’,Physical Review Letters79(26), 5194–5197. arXiv:quant-ph/9512022.
Coles,P.,Berta,M,Tomamichel,M &Wehner,S (2015), ‘Entropic uncertainty relations and their applications’. arXiv:1511.04857.
Coles,P.J.,Colbeck,R,Yu,L &Zwolak,M (2012), ‘Uncertainty relations from simple entropic properties’,Physical Review Letters108(21), 210405. arXiv:1112.0543.
Cooney,T.,Mosonyi,M &Wilde,M. M (2014), ‘Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication’,Communications in Mathematical Physics344(3), June 2016, 797–829. arXiv:1408.
Cover,T.M. &Thomas,J. A (2006),Elements of Information Theory, 2nd edn, Wiley-Interscience,New York, NY.
Csiszar,I (1967), ‘Information-type measures of difference of probability distributions and indirect observations’,Studia Sci. Math. Hungar.2, 299–318.
Csiszár,I &Körner,J (1978), ‘Broadcast channels with confidential messages’,IEEETransactions on Information Theory24(3), 339–348.
Csiszár,I. &Körner,J. (2011),Information Theory: Coding Theorems for Discrete Memoryless Systems, Probability and Mathematical Statistics, 2nd edn, Cambridge University Press.
Cubitt,T.,Elkouss,D,Matthews,W,Ozols,M,Perez-Garcia,D. &Strelchuk,S (2015), ‘Unbounded number of channel uses may be required to detect quantum capacity’,Nature Communications6, 6739. arXiv:1408.5115.
Czekaj,L &Horodecki,P (2009), ‘Purely quantum superadditivity of classical capacities of quantum multiple access channels’,Physical Review Letters102(11), 110505. arXiv:0807.3977.
Dalai,M (2013), ‘Lower bounds on the probability of error for classical and classical– quantum channels’,IEEE Transactions on Information Theory59(12), 8027–8056. arXiv:1201.5411.
Datta,N (2009), ‘Min- and max-relative entropies and a new entanglement monotone’,IEEE Transactions on Information Theory55(6), 2816–2826. arXiv:0803.2770.
Datta,N &Hsieh,M.-H. (2010), ‘Universal coding for transmission of private information’,Journal of Mathematical Physics51(12), 122202. arXiv:1007.2629.
Datta,N &Hsieh,M.-H. (2011), ‘The apex of the family tree of protocols: Optimal rates and resource inequalities’,New Journal of Physics13, 093042. arXiv:1103. 1135.
Datta,N &Hsieh,M.-H. (2013), ‘One-shot entanglement-assisted quantum and classical communication’,IEEE Transactions on Information Theory59(3), 1929–1939. arXiv:1105.3321.
Datta,N &Leditzky,F (2015), ‘Second-order asymptotics for source coding, dense coding, and pure-state entanglement conversions’,IEEE Transactions on Information Theory61(1), 582–608. arXiv:1403.2543.
Datta,N &Renner,R (2009), ‘Smooth entropies and the quantum information spectrum’,IEEE Transactions on Information Theory55(6), 2807–2815. arXiv:0801.0282.
Datta,N.,Tomamichel,M &Wilde,M. M (2014), ‘On the Second-Order Asymptotics for Entanglement-Assisted Communication’,Quantum Information Processing (15) 6, June 2016, 2569–2591. arXiv:1405.1797.
Datta,N &Wilde,M. M (2015), ‘Quantum Markov chains, sufficiency of quantum channels, and Rényi information measures’,Journal of Physics A48(50), 505301. arXiv:1501.05636.
Davies,E.B. &Lewis,J. T (1970), ‘An operational approach to quantum probability’,Communications in Mathematical Physics17(3), 239–260.
de Broglie,L (1924), ‘Recherches sur la théorie des quanta’, PhD thesis,Paris.
Deutsch,D (1985), ‘Quantum theory, the Church–Turing principle and the universal quantum computer’,Proceedings of the Royal Society of London A400(1818), 97–117.
Devetak,I (2005), ‘The private classical capacity and quantum capacity of a quantum channel’,IEEE Transactions on Information Theory51(1), 44–55. arXiv:quantph/0304127.
Devetak,I (2006), ‘Triangle of dualities between quantum communication protocols’,Physical Review Letters97(14), 140503.
Devetak,I.,Harrow,A. W &Winter,A (2004), ‘A family of quantum protocols’,Physical Review Letters93(23), 239503. arXiv:quant-ph/0308044.
Devetak,I.,Harrow,A. W &Winter,A (2008), ‘A resource framework for quantum Shannon theory’,IEEE Transactions on Information Theory54(10), 4587–4618. arXiv:quant-ph/0512015.
Devetak,I.,Junge,M,King,C &Ruskai,M. B (2006), ‘Multiplicativity of completely bounded p-norms implies a new additivity result’,Communications in Mathematical Physics266(1), 37–63. arXiv:quant-ph/0506196.
Devetak,I &Shor,P. W (2005), ‘The capacity of a quantum channel for simultaneous transmission of classical and quantum information’,Communications in Mathematical Physics256(2), 287–303. arXiv:quant-ph/0311131.
Devetak,I &Winter,A (2003), ‘Classical data compression with quantum side information’,Physical Review A68(4), 042301. arXiv:quant-ph/0209029.
Devetak,I &Winter,A (2004), ‘Relating quantum privacy and quantum coherence: An operational approach’,Physical Review Letters93(8), 080501. arXiv:quantph/ 0307053.
Devetak,I &Winter,A (2005), ‘Distillation of secret key and entanglement from quantum states’,Proceedings of the Royal Society A461(2053), 207–235. arXiv:quant-ph/0306078.
Devetak,I &Yard,J (2008), ‘Exact cost of redistributing multipartite quantum states’,Physical Review Letters100(23), 230501.
Dieks,D (1982), ‘Communication by EPR devices’,Physics Letters A92, 271.
Ding,D &Wilde,M. M (2015), ‘Strong converse exponents for the feedback-assisted classical capacity of entanglement-breaking channels’. arXiv:1506.02228.
Dirac,P.A.M. (1982),The Principles of Quantum Mechanics (International Series of Monographs on Physics), Oxford University Press,USA.
DiVincenzo,D.P.,Horodecki,M,Leung,D. W,Smolin,J. A &Terhal,B. M (2004), ‘Locking classical correlations in quantum states’,Physical Review Letters92(6), 067902. arXiv:quant-ph/0303088.
DiVincenzo,D.P.,Shor,P. W &Smolin,J. A (1998), ‘Quantum-channel capacity of very noisy channels’,Physical Review A57(2), 830–839. arXiv:quant-ph/9706061.
Dowling,J.P. &Milburn,G. J (2003), ‘Quantum technology: The second quantum revolution’,Philosophical Transactions of The Royal Society of London Series A361(1809), 1655–1674. arXiv:quant-ph/0206091.
Dupuis,F (2010), ‘The decoupling approach to quantum information theory’, PhD thesis, University of Montreal. arXiv:1004.1641.
Dupuis,F.,Berta,M,Wullschleger,J &Renner,R (2014), ‘One-shot decoupling’,Communications in Mathematical Physics328(1), 251–284. arXiv:1012.6044.
Dupuis,F.,Florjanczyk,J,Hayden,P &Leung,D (2013), ‘The locking-decoding frontier for generic dynamics’,Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences469(2159). arXiv:1011.1612.
Dupuis,F.,Hayden,P &Li,K (2010), ‘A father protocol for quantum broadcast channels’,IEEE Transactions on Information Theory56(6), 2946–2956. arXiv:quantph/ 0612155.
Dupuis,F &Wilde,M. M (2016), ‘Swiveled Rényi entropies’,Quantum Information Processing15(3), 1309–1345. arXiv:1506.00981.
Dutil,N (2011), ‘Multiparty quantum protocols for assisted entanglement distillation’, PhD thesis, McGill University. arXiv:1105.4657.
Einstein,A (1905), ‘Über einen die erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt’,Annalen der Physik17, 132–148.
Einstein,A.,Podolsky,B &Rosen,N (1935), ‘Can quantum-mechanical description of physical reality be considered complete?’,Physical Review47, 777–780.
Ekert,A.K. (1991), ‘Quantum cryptography based on Bell's theorem’,Physical Review Letters67(6), 661–663.
Elias,P (1972), ‘The efficient construction of an unbiased random sequence’,Annals of Mathematical Statistics43(3), 865–870.
Elkouss,D &Strelchuk,S (2015), ‘Superadditivity of private information for any number of uses of the channel’,Physical Review Letters115(4), 040501. arXiv:1502.05326.
Fannes,M (1973), ‘A continuity property of the entropy density for spin lattices’,Communications in Mathematical Physics31, 291.
Fano,R.M. (2008), ‘Fano inequality’,Scholarpedia3(10), 6648.
Fawzi,O.,Hayden,P,Savov,I,Sen,P &Wilde,M. M (2012), ‘Classical communication over a quantum interference channel’,IEEE Transactions on Information Theory58(6), 3670–3691. arXiv:1102.2624.
Fawzi,O.,Hayden,P &Sen,P (2013), ‘From low-distortion norm embeddings to explicit uncertainty relations and efficient information locking’,Journal of the ACM60(6), 44:1–44:61. arXiv:1010.3007.
Fawzi,O &Renner,R (2015), ‘Quantum conditional mutual information and approximate Markov chains’,Communications in Mathematical Physics340(2), 575–611. arXiv:1410.0664.
Feller,W (1971),An Introduction to Probability Theory and Its Applications, 2nd edn, John Wiley and Sons.
Feynman,R.P. (1982), ‘Simulating physics with computers’,International Journal of Theoretical Physics21, 467–488.
Feynman,R.P. (1998),Feynman Lectures On Physics (3 Volume Set), Addison Wesley Longman.
Fuchs,C (1996), ‘Distinguishability and Accessible Information in Quantum Theory’, PhD thesis, University of New Mexico. arXiv:quant-ph/9601020.
Fuchs,C.A. &Caves,C. M (1995), ‘Mathematical techniques for quantum communication theory’,Open Systems & Information Dynamics3(3), 345–356. arXiv:quantph/ 9604001.
Fuchs,C.A. &van de Graaf,J. (1998), ‘Cryptographic distinguishability measures for quantum mechanical states’,IEEE Transactions on Information Theory45(4), 1216–1227. arXiv:quant-ph/9712042.
Fukuda,M &King,C (2010), ‘Entanglement of random subspaces via the Hastings bound’,Journal of Mathematical Physics51(4), 042201. arXiv:0907.5446.
Fukuda,M.,King,C &Moser,D. K (2010), ‘Comments on Hastings’ additivity counterexamples',Communications in Mathematical Physics296(1), 111–143. arXiv:0905.3697.
Gamal,A.E. &Kim,Y.-H. (2012),Network Information Theory, Cambridge University Press. arXiv:1001.3404.
García-Patrón,R.,Pirandola,S,Lloyd,S &Shapiro,J. H (2009), ‘Reverse coherent information’,Physical Review Letters102(21), 210501. arXiv:0808.0210.
Gerlach,W &Stern,O (1922), ‘Das magnetische moment des silberatoms’,Zeitschrift für Physik9, 353–355.
Giovannetti,V &Fazio,R (2005), ‘Information-capacity description of spin-chain correlations’,Physical Review A71(3), 032314. arXiv:quant-ph/0405110.
Giovannetti,V.,Guha,S,Lloyd,S,Maccone,L &Shapiro,J. H (2004), ‘Minimum output entropy of bosonic channels: A conjecture’,Physical Review A70(3), 032315. arXiv:quant-ph/0404005.
Giovannetti,V.,Guha,S,Lloyd,S,Maccone,L,Shapiro,J. H &Yuen,H. P (2004), ‘Classical capacity of the lossy bosonic channel: The exact solution’,Physical Review Letters92(2), 027902. arXiv:quant-ph/0308012.
Giovannetti,V.,Holevo,A. S &García-Patrón,R (2015), ‘A solution of Gaussian optimizer conjecture for quantum channels’,Communications in Mathematical Physics334(3), 1553–1571.
Giovannetti,V.,Holevo,A. S,Lloyd,S &Maccone,L (2010), ‘Generalized minimal output entropy conjecture for one-mode Gaussian channels: definitions and some exact results’,Journal of Physics A: Mathematical and Theoretical43(41), 415305. arXiv:1004.4787.
Giovannetti,V.,Lloyd,S &Maccone,L (2012), ‘Achieving the Holevo bound via sequential measurements’,Physical Review A85, 012302. arXiv:1012.0386.
Giovannetti,V.,Lloyd,S,Maccone,L &Shor,P. W (2003a), ‘Broadband channel capacities’,Physical Review A68(6), 062323. arXiv:quant-ph/0307098.
Giovannetti,V.,Lloyd,S,Maccone,L &Shor,P. W (2003b), ‘Entanglement assisted capacity of the broadband lossy channel’,Physical Review Letters91(4), 047901. arXiv:quant-ph/0304020.
Glauber,R.J. (1963a), ‘Coherent and incoherent states of the radiation field’,Physical Review131(6), 2766–2788.
Glauber,R.J. (1963b), ‘The quantum theory of optical coherence’,Physical Review130(6), 2529–2539.
Glauber,R.J. (2005), ‘One hundred years of light quanta’, inK,Grandin, ed.,Les Prix Nobel. The Nobel Prizes 2005, Nobel Foundation, pp. 90–91.
Gordon,J.P. (1964), ‘Noise at optical frequencies; information theory’, inP.A,Miles, ed.,Quantum Electronics and Coherent Light; Proceedings of the International School of Physics Enrico Fermi, Course XXXI, Academic PressNew York, pp. 156–181.
Gottesman,D (1996), ‘Class of quantum error-correcting codes saturating the quantum Hamming bound’,Physical Review A54(3), 1862–1868. arXiv:quant-ph/9604038.
Gottesman,D (1997), ‘Stabilizer Codes and Quantum Error Correction’, PhD thesis, California Institute of Technology. arXiv:quant-ph/9705052.
Grafakos,L (2008),Classical Fourier Analysis, 2nd edn, Springer.
Grassl,M.,Beth,T &Pellizzari,T (1997), ‘Codes for the quantum erasure channel’,Physical Review A56(1), 33–38. arXiv:quant-ph/9610042.
Greene,B (1999),The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory, W. W. Norton & Company.
Griffiths,D.J. (1995),Introduction to Quantum Mechanics, Prentice-Hall, Inc.
Groisman,B.,Popescu,S &Winter,A (2005), ‘Quantum, classical, and total amount of correlations in a quantum state’,Physical Review A72(3), 032317. arXiv:quantph/ 0410091.
Grudka,A &Horodecki,P (2010), ‘Nonadditivity of quantum and classical capacities for entanglement breaking multiple-access channels and the butterfly network’,Physical Review A81(6), 060305. arXiv:0906.1305.
Guha,S (2008), ‘Multiple-User Quantum Information Theory for Optical Communication Channels’, PhD thesis, Massachusetts Institute of Technology.
Guha,S.,Hayden,P,Krovi,H,Lloyd,S,Lupo,C,Shapiro,J. H,Takeoka,M &Wilde,M. M (2014), ‘Quantum enigma machines and the locking capacity of a quantum channel’,Physical Review X4(1), 011016. arXiv:1307.5368.
Guha,S &Shapiro,J. H (2007), ‘Classical information capacity of the bosonic broadcast channel’, inProceedings of the IEEE International Symposium on Information Theory,Nice, France, pp. 1896–1900. arXiv:0704.1901.
Guha,S.,Shapiro,J. H &Erkmen,B. I (2007), ‘Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture’,Physical Review A76(3), 032303. arXiv:0706.3416.
Guha,S.,Shapiro,J. H &Erkmen,B. I (2008), ‘Capacity of the bosonic wiretap channel and the entropy photon-number inequality’, inProceedings of the IEEE International Symposium on Information Theory, Toronto,Ontario, Canada, pp. 91–95. arXiv:0801.0841.
Gupta,M &Wilde,M. M (2015), ‘Multiplicativity of completely bounded p-norms implies a strong converse for entanglement-assisted capacity’,Communications in Mathematical Physics334(2), 867–887. arXiv:1310.7028.
Hamada,M (2005), ‘Information rates achievable with algebraic codes on quantum discrete memoryless channels’,IEEE Transactions on Information Theory51(12), 4263–4277. arXiv:quant-ph/0207113.
Harrington,J &Preskill,J (2001), ‘Achievable rates for the Gaussian quantum channel’,Physical Review A64(6), 062301. arXiv:quant-ph/0105058.
Harrow,A (2004), ‘Coherent communication of classical messages’,Physical Review Letters92(9), 097902. arXiv:quant-ph/0307091.
Harrow,A.W. &Lo,H-K. (2004), ‘A tight lower bound on the classical communication cost of entanglement dilution’,IEEE Transactions on Information Theory50(2), 319–327. arXiv:quant-ph/0204096.
Hastings,M.B. (2009), ‘Superadditivity of communication capacity using entangled inputs’,Nature Physics5, 255–257. arXiv:0809.3972.
Hausladen,P.,Jozsa,R,Schumacher,B,Westmoreland,M &Wootters,W. K (1996), ‘Classical information capacity of a quantum channel’,Physical Review A54(3), 1869–1876.
Hausladen,P.,Schumacher,B,Westmoreland,M &Wootters,W. K (1995), ‘Sending classical bits via quantum its’,Annals of the New York Academy of Sciences755, 698–705.
Hayashi,M (2002), ‘Exponents of quantum fixed-length pure-state source coding’,Physical Review A66(3), 032321. arXiv:quant-ph/0202002.
Hayashi,M (2006),Quantum Information: An Introduction, Springer.
Hayashi,M (2007), ‘Error exponent in asymmetric quantum hypothesis testing and its application to classical–quantum channel coding’,Physical Review A76(6), 062301. arXiv:quant-ph/0611013.
Hayashi,M.,Koashi,M,Matsumoto,K,Morikoshi,F &Winter,A (2003), ‘Error exponents for entanglement concentration’,Journal of Physics A: Mathematical and General36(2), 527. arXiv:quant-ph/0206097.
Hayashi,M &Matsumoto,K (2001), ‘Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding’. arXiv:quant-ph/0109028.
Hayashi,M &Nagaoka,H (2003), ‘General formulas for capacity of classical–quantum channels’,IEEE Transactions on Information Theory49(7), 1753–1768. arXiv:quantph/ 0206186.
Hayden,P (2007), ‘The maximal p-norm multiplicativity conjecture is false’. arXiv:0707.3291.
Hayden,P.,Horodecki,M,Winter,A &Yard,J (2008), ‘A decoupling approach to the quantum capacity’,Open Systems & Information Dynamics15(1), 7–19. arXiv:quant-ph/0702005.
Hayden,P.,Jozsa,R,Petz,D &Winter,A (2004), ‘Structure of states which satisfy strong subadditivity of quantum entropy with equality’,Communications in Mathematical Physics246(2), 359–374. arXiv:quant-ph/0304007.
Hayden,P.,Jozsa,R &Winter,A (2002), ‘Trading quantum for classical resources in quantum data compression’,Journal of Mathematical Physics43(9), 4404–4444. arXiv:quant-ph/0204038.
Hayden,P.,Leung,D,Shor,P. W &Winter,A (2004), ‘Randomizing quantum states: Constructions and applications’,Communications in Mathematical Physics250(2), 371–391. arXiv:quant-ph/0307104.
Hayden,P.,Shor,P. W &Winter,A (2008), ‘Random quantum codes from Gaussian ensembles and an uncertainty relation’,Open Systems & Information Dynamics15(1), 71–89. arXiv:0712.0975.
Hayden,P &Winter,A (2003), ‘Communication cost of entanglement transformations’,Physical Review A67(1), 012326. arXiv:quant-ph/0204092.
Hayden,P &Winter,A (2008), ‘Counterexamples to the maximal p-norm multiplicativity conjecture for all’,Communications in Mathematical Physics284(1), 263–280. arXiv:0807.4753.
Heinosaari,T &Ziman,M (2012),The Mathematical Language of Quantum Theory: From Uncertainty to Entanglement, Cambridge University Press.
Heisenberg,W (1925), ‘Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen’,Zeitschrift für Physik33, 879–893.
Helstrom,C.W. (1969), ‘Quantum detection and estimation theory’,Journal of Statistical Physics1, 231–252.
Helstrom,C.W. (1976),Quantum Detection and Estimation Theory, Academic,New York, NY.
Herbert,N (1982), ‘Flash—a superluminal communicator based upon a new kind of quantum measurement’,Foundations of Physics12(12), 1171–1179.
Hirche,C &Morgan,C (2015), ‘An improved rate region for the classical–quantum broadcast channel’,Proceedings of the 2015 IEEE International Symposium on Information Theory pp. 2782–2786. arXiv:1501.07417.
Hirche,C.,Morgan,C &Wilde,M. M (2016), ‘Polar codes in network quantum information theory’,IEEE Transactions on Information Theory62(2), 915–924. arXiv:1409.7246.
Hirschman,I.I. (1952), ‘A convexity theorem for certain groups of transformations’,Journal d'Analyse Mathématique2(2), 209–218.
Holevo,A.S. (1973a), ‘Bounds for the quantity of information transmitted by a quantum communication channel’,Problems of Information Transmission9, 177–183.
Holevo,A.S. (1973b), ‘Statistical problems in quantum physics’, inSecond Japan- USSR Symposium on Probability Theory, Vol.330 of Lecture Notes in Mathematics, Springer Berlin/Heidelberg, pp. 104–119.
Holevo,A.S. (1998), ‘The capacity of the quantum channel with general signal states’,IEEE Transactions on Information Theory44(1), 269–273. arXiv:quant-ph/9611023.
Holevo,A.S. (2000), ‘Reliability function of general classical–quantum channel’,IEEETransactions on Information Theory46(6), 2256–2261. arXiv:quant-ph/9907087.
Holevo,A.S. (2002a),An Introduction to Quantum Information Theory, Moscow Center of Continuous Mathematical Education,Moscow. In Russian.
Holevo,A.S. (2002b), ‘On entanglement assisted classical capacity’,Journal of Mathematical Physics43(9), 4326–4333. arXiv:quant-ph/0106075.
Holevo,A.S. (2012), Quantum Systems, Channels, Information, de Gruyter Studies in Mathematical Physics (Book 16), de Gruyter.
Holevo,A.S. &Werner,R. F (2001), ‘Evaluating capacities of bosonic Gaussian channels’,Physical Review A63(3), 032312. arXiv:quant-ph/9912067.
Horodecki,M (1998), ‘Limits for compression of quantum information carried by ensembles of mixed states’,Physical Review A57(5), 3364–3369. arXiv:quantph/9712035.
Horodecki,M.,Horodecki,P &Horodecki,R (1996), ‘Separability of mixed states: necessary and sufficient conditions’,Physics Letters A223(1-2), 1–8. arXiv:quantph/ 9605038.
Horodecki,M.,Horodecki,P,Horodecki,R,Leung,D &Terhal,B (2001), ‘Classical capacity of a noiseless quantum channel assisted by noisy entanglement’,Quantum Information and Computation1(3), 70–78. arXiv:quant-ph/0106080.
Horodecki,M.,Oppenheim,J &Winter,A (2005), ‘Partial quantum information’,Nature436, 673–676.
Horodecki,M.,Oppenheim,J &Winter,A (2007), ‘Quantum state merging and negative information’,Communications in Mathematical Physics269(1), 107–136. arXiv:quant-ph/0512247.
Horodecki,M.,Shor,P. W &Ruskai,M. B (2003), ‘Entanglement breaking channels’,Reviews in Mathematical Physics15(6), 629–641. arXiv:quant-ph/0302031.
Horodecki,P (1997), ‘Separability criterion and inseparable mixed states with positive partial transposition’,Physics Letters A232(5), 333–339. arXiv:quant-ph/9703004.
Horodecki,R &Horodecki,P (1994), ‘Quantum redundancies and local realism’,Physics Letters A194(3), 147–152.
Horodecki,R.,Horodecki,P,Horodecki,M &Horodecki,K (2009), ‘Quantum entanglement’,Reviews of Modern Physics81(2), 865–942. arXiv:quant-ph/0702225.
Hsieh,M-H.,Devetak,I &Winter,A (2008), ‘Entanglement-assisted capacity of quantum multiple-access channels’,IEEE Transactions on Information Theory54(7), 3078–3090. arXiv:quant-ph/0511228.
Hsieh,M-H,Luo,Z &Brun,T (2008), ‘Secret-key-assisted private classical communication capacity over quantum channels’,Physical Review A78(4), 042306. arXiv:0806.3525.
Hsieh,M-H &Wilde,M. M (2009), ‘Public and private communication with a quantum channel and a secret key’,Physical Review A80(2), 022306. arXiv:0903. 3920.
Hsieh,M-H &Wilde,M. M (2010a), ‘Entanglement-assisted communication of classical and quantum information’,IEEE Transactions on Information Theory56(9), 4682–4704. arXiv:0811.4227.
Hsieh,M-H &Wilde,M. M (2010b), ‘Trading classical communication, quantum communication, and entanglement in quantum Shannon theory’,IEEE Transactions on Information Theory56(9), 4705–4730. arXiv:0901.3038.
Jaynes,E.T. (1957a), ‘Information theory and statistical mechanics’,Physical Review106, 620.
Jaynes,E.T. (1957b), ‘Information theory and statistical mechanics II’,Physical Review108, 171.
Jaynes,E.T. (2003),Probability Theory: The Logic of Science, Cambridge University Press.
Jencova,A (2012), ‘Reversibility conditions for quantum operations’,Reviews in Mathematical Physics24(7), 1250016. arXiv:1107.0453.
Jochym-O'Connor,T.,Brádler,K. &Wilde,M. M (2011), ‘Trade-off coding for universal qudit cloners motivated by the Unruh effect’,Journal of Physics A: Mathematical and Theoretical44(41), 415306. arXiv:1103.0286.
Jozsa,R (1994), ‘Fidelity for mixed quantum states’,Journal of Modern Optics41(12), 2315–2323.
Jozsa,R.,Horodecki,M,Horodecki,P &Horodecki,R (1998), ‘Universal quantum information compression’,Physical Review Letters81(8), 1714–1717. arXiv:quantph/ 9805017.
Jozsa,R &Presnell,S (2003), ‘Universal quantum information compression and degrees of prior knowledge’,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences459(2040), 3061–3077. arXiv:quant-ph /0210196.
Jozsa,R &Schumacher,B (1994), ‘A new proof of the quantum noiseless coding theorem’,Journal of Modern Optics41(12), 2343–2349.
Junge,M.,Renner,R,Sutter,D,Wilde,M. M &Winter,A (2015), ‘Universal recovery from a decrease of quantum relative entropy’. arXiv:1509.07127.
Kaye,P &Mosca,M (2001), ‘Quantum networks for concentrating entanglement’,Journal of Physics A: Mathematical and General34(35), 6939. arXiv:quantph/ 0101009.
Kelvin,W.T. (1901), ‘Nineteenth-century clouds over the dynamical theory of heat and light’,The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science2(6), 1.
Kemperman,J.H.B. (1969), ‘On the optimum rate of transmitting information’,Lecture Notes in Mathematics89, 126–169. In Probability and Information Theory.
Kim,I.H. (2013), ‘Application of conditional independence to gapped quantum manybody systems’, www.physics.usyd.edu.au/quantum/Coogee2013. Slide 43.
King,C (2002), ‘Additivity for unital qubit channels’,Journal of Mathematical Physics43(10), 4641–4653. arXiv:quant-ph/0103156.
King,C (2003), ‘The capacity of the quantum depolarizing channel’,IEEE Transactions on Information Theory49(1), 221–229. arXiv:quant-ph/0204172.
King,C.,Matsumoto,K,Nathanson,M &Ruskai,M. B (2007), ‘Properties of conjugate channels with applications to additivity and multiplicativity’,Markov Processes and Related Fields13(2), 391–423. J.T Lewis memorial issue. arXiv:quantph/ 0509126.
Kitaev,A.Y. (1997),Uspekhi Mat. Nauk.52(53).
Klesse,R (2008), ‘A random coding based proof for the quantum coding theorem’,Open Systems & Information Dynamics15(1), 21–45. arXiv:0712.2558.
Knill,E.H.,Laflamme,R &Zurek,W. H (1998), ‘Resilient quantum computation’,Science279, 342–345. quant-ph/9610011.
Koashi,M &Imoto,N (2001), ‘Teleportation cost and hybrid compression of quantum signals’. arXiv:quant-ph/0104001.
Koenig,R.,Renner,R &Schaffner,C (2009), ‘The operational meaning of minand max-entropy’,IEEE Transactions on Information Theory55(9), 4337–4347. arXiv:0807.1338.
Koenig,R &Wehner,S (2009), ‘A strong converse for classical channel coding using entangled inputs’,Physical Review Letters103(7), 070504. arXiv:0903.2838.
König,R.,Renner,R,Bariska,A &Maurer,U (2007), ‘Small accessible quantum information does not imply security’,Physical Review Letters98(14), 140502. arXiv:quant-ph/0512021.
Kremsky,I.,Hsieh,M-H. &Brun,T. A (2008), ‘Classical enhancement of quantumerror- correcting codes’,Physical Review A78(1), 012341. arXiv:0802.2414.
Kullback,S (1967), ‘A lower bound for discrimination in terms of variation’,IEEE-IT13, 126–127.
Kumagai,W &Hayashi,M (2013), ‘Entanglement concentration is irreversible’,Physical Review Letters111(13), 130407. arXiv:1305.6250.
Kuperberg,G (2003), ‘The capacity of hybrid quantum memory’,IEEE Transactions on Information Theory49(6), 1465–1473. arXiv:quant-ph/0203105.
Laflamme,R.,Miquel,C,Paz,J. P &Zurek,W. H (1996), ‘Perfect quantum error correcting code’,Physical Review Letters77(1), 198–201.
Landauer,R (1995), ‘Is quantum mechanics useful?’,Philosophical Transactions of the Royal Society: Physical and Engineering Sciences353(1703), 367–376.
Lanford,O.E. &Robinson,D. W (1968), ‘Mean entropy of states in quantumstatistical mechanics’,Journal of Mathematical Physics9(7), 1120–1125.
Levitin,L.B. (1969), ‘On the quantum measure of information’, in Proceedings of the Fourth All-Union Conference on Information and Coding Theory, Sec. II, Tashkent.
Li,K &Winter,A (2014), ‘Squashed entanglement, k-extendibility, quantum Markov chains, and recovery maps’. arXiv:1410.4184.
Li,K.,Winter,A,Zou,X &Guo,G-C. (2009), ‘Private capacity of quantum channels is not additive’,Physical Review Letters103(12), 120501. arXiv:0903.4308.
Lieb,E.H. (1973), ‘Convex trace functions and the Wigner–Yanase–Dyson conjecture’,Advances in Mathematics11, 267–288.
Lieb,E.H. &Ruskai,M. B (1973a), ‘A fundamental property of quantum-mechanical entropy’,Physical Review Letters30(10), 434–436.
Lieb,E.H. &Ruskai,M. B (1973b), ‘Proof of the strong subadditivity of quantummechanical entropy’,Journal of Mathematical Physics14, 1938–1941.
Lindblad,G (1975), ‘Completely positive maps and entropy inequalities’,Communications in Mathematical Physics40(2), 147–151.
Lloyd,S (1997), ‘Capacity of the noisy quantum channel’,Physical Review A55(3), 1613–1622. arXiv:quant-ph/9604015.
Lloyd,S.,Giovannetti,V &Maccone,L (2011), ‘Sequential projective measurements for channel decoding’,Physical Review Letters106(25), 250501. arXiv:1012.0106.
Lo,H-K. (1995), ‘Quantum coding theorem for mixed states’,Optics Communications119(5-6), 552–556. arXiv:quant-ph/9504004.
Lo,H-K. &Popescu,S (1999), ‘Classical communication cost of entanglement manipulation: Is entanglement an interconvertible resource?’,Physical Review Letters83(7), 1459–1462.
Lo,H-K. &Popescu,S (2001), ‘Concentrating entanglement by local actions: Beyond mean values’,Physical Review A63(2), 022301. arXiv:quant-ph/9707038.
Lupo,C &Lloyd,S (2014), ‘Quantum-locked key distribution at nearly the classical capacity rate’,Physical Review Letters113(16), 160502. arXiv:1406.4418.
Lupo,C &Lloyd,S (2015), ‘Quantum data locking for high-rate private communication’,New Journal of Physics17(3), 033022.
MacKay,D (2003),Information Theory, Inference, and Learning Algorithms, Cambridge University Press.
Matthews,W &Wehner,S (2014), ‘Finite blocklength converse bounds for quantum channels’,IEEE Transactions on Information Theory60(11), 7317–7329. arXiv:1210.4722.
McEvoy,J.P. &Zarate,O (2004),Introducing Quantum Theory, 3rd edn, Totem Books.
Misner,C.W.,Thorne,K. S &Zurek,W. H (2009), ‘John Wheeler, relativity, and quantum information’, Physics Today.
Morgan,C &Winter,A (2014), ‘“Pretty strong” converse for the quantum capacity of degradable channels’,IEEE Transactions on Information Theory60(1), 317–333. arXiv:1301.4927.
Mosonyi,M (2005), ‘Entropy, Information and Structure of Composite Quantum States’, PhD thesis, Katholieke Universiteit Leuven. Available at https://lirias.kuleuven.be/bitstream/1979/41/2/thesisbook9.pdf.
Mosonyi,M &Datta,N (2009), ‘Generalized relative entropies and the capacity of classical–quantum channels’,Journal of Mathematical Physics50(7), 072104. arXiv:0810.3478.
Mosonyi,M &Petz,D (2004), ‘Structure of sufficient quantum coarse-grainings’,Letters in Mathematical Physics68(1), 19–30. arXiv:quant-ph/0312221.
Mullins,J (2001), ‘The topsy turvy world of quantum computing’,IEEE Spectrum38(2), 42–49.
Nielsen,M.A. (1998), ‘Quantum information theory’, PhD thesis, University of New Mexico. arXiv:quant-ph/0011036.
Nielsen,M.A. (1999), ‘Conditions for a class of entanglement transformations’,Physical Review Letters83(2), 436–439. arXiv:quant-ph/9811053.
Nielsen,M.A. (2002), ‘A simple formula for the average gate fidelity of a quantum dynamical operation’,Physics Letters A303(4), 249–252.
Nielsen,M.A. &Chuang,I. L (2000),Quantum Computation and Quantum Information, Cambridge University Press.
Ogawa,T &Nagaoka,H (1999), ‘Strong converse to the quantum channel coding theorem’,IEEE Transactions on Information Theory45(7), 2486–2489. arXiv:quantph/9808063.
Ogawa,T &Nagaoka,H (2007), ‘Making good codes for classical–quantum channel coding via quantum hypothesis testing’,IEEE Transactions on Information Theory53(6), 2261–2266.
Ohya,M &Petz,D (1993),Quantum Entropy and Its Use, Springer.
Ollivier,H &Zurek,W. H (2001), ‘Quantum discord: A measure of the quantumness of correlations’,Physical Review Letters88(1), 017901. arXiv:quant-ph/0105072.
Ozawa,M (1984), ‘Quantum measuring processes of continuous observables’,Journal of Mathematical Physics25(1), 79–87.
Ozawa,M (2000), ‘Entanglement measures and the Hilbert–Schmidt distance’,Physics Letters A268(3), 158–160. arXiv:quant-ph/0002036.
Pati,A.K. &Braunstein,S. L (2000), ‘Impossibility of deleting an unknown quantum state’,Nature404, 164–165. arXiv:quant-ph/9911090.
Peres,A (2002), ‘How the no-cloning theorem got its name’. arXiv:quant-ph/0205076.
Petz,D (1986), ‘Sufficient subalgebras and the relative entropy of states of a von Neumann algebra’,Communications in Mathematical Physics105(1), 123–131.
Petz,D (1988), ‘Sufficiency of channels over von Neumann algebras’,Quarterly Journal of Mathematics39(1), 97–108.
Pierce,J.R. (1973), ‘The early days of information theory’,IEEE Transactions on Information Theory IT-19(1), 3–8.
Pinsker,M.S. (1960), ‘Information and information stability of random variables and processes’,Problemy Peredaci Informacii7. AN SSSR, Moscow. English translation: Holden-Day,San Francisco, CA,1964.
Planck,M (1901), ‘Ueber das gesetz der energieverteilung im normalspectrum’,Annalen der Physik4, 553–563.
Plenio,M.B.,Virmani,S &Papadopoulos,P (2000), ‘Operator monotones, the reduction criterion and the relative entropy’,Journal of Physics A: Mathematical and General33(22), L193. arXiv:quant-ph/0002075.
Preskill,J (1998), ‘Reliable quantum computers’,Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences454(1969), 385–410. arXiv:quantph/9705031.
Radhakrishnan,J.,Sen,P &Warsi,N (2014), ‘One-shot Marton inner bound for classical–quantum broadcast channel’. arXiv:1410.3248.
Rains,E.M. (2001), ‘A semidefinite program for distillable entanglement’,IEEE Transactions on Information Theory47(7), 2921–2933. arXiv:quant-ph/0008047.
Reed,M &Simon,B (1975),Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, Academic Press.
Renner,R (2005), ‘Security of Quantum Key Distribution’, PhD thesis, ETH Zurich. arXiv:quant-ph/0512258.
Rivest,R.,Shamir,A &Adleman,L (1978), ‘A method for obtaining digital signatures and public-key cryptosystems’,Communications of the ACM21(2), 120–126.
Sakurai,J.J. (1994),Modern Quantum Mechanics (2nd Edition), Addison Wesley.
Sason,I (2013), ‘Entropy bounds for discrete random variables via maximal coupling’,IEEE Transactions on Information Theory59(11), 7118–7131. arXiv:1209.5259.
Savov,I (2008), ‘Distributed compression and squashed entanglement’, Master's thesis, McGill University. arXiv:0802.0694.
Savov,I (2012), ‘Network information theory for classical–quantum channels’, PhD thesis, McGill University, School of Computer Science. arXiv:1208.4188.
Savov,I &Wilde,M. M (2015), ‘Classical codes for quantum broadcast channels’,IEEE Transactions on Information Theory61(12), 7017–7028. arXiv:1111.3645.
Scarani,V (2013), ‘The device-independent outlook on quantum physics (lecture notes on the power of Bell's theorem)’. arXiv:1303.3081.
Scarani,V.,Bechmann-Pasquinucci,H,Cerf,N. J,Dušek,M,Lütkenhaus,N &Peev,M (2009), ‘The security of practical quantum key distribution’,Reviews of Modern Physics81(3), 1301–1350. arXiv:0802.4155.
Scarani,V.,Iblisdir,S,Gisin,N & Acín,A (2005), ‘Quantum cloning’,Reviews of Modern Physics77(4), 1225–1256. arXiv:quant-ph/0511088.
Schrödinger,E (1926), ‘Quantisierung als eigenwertproblem’,Annalen der Physik79, 361–376.
Schrödinger,E (1935), ‘Discussion of probability relations between separated systems’,Proceedings of the Cambridge Philosophical Society31, 555–563.
Schumacher,B (1995), ‘Quantum coding’,Physical Review A51(4), 2738–2747.
Schumacher,B (1996), ‘Sending entanglement through noisy quantum channels’,Physical Review A54(4), 2614–2628.
Schumacher,B &Nielsen,M. A (1996), ‘Quantum data processing and error correction’,Physical Review A54(4), 2629–2635. arXiv:quant-ph/9604022.
Schumacher,B &Westmoreland,M. D (1997), ‘Sending classical information via noisy quantum channels’,Physical Review A56(1), 131–138.
Schumacher,B &Westmoreland,M. D (1998), ‘Quantum privacy and quantum coherence’,Physical Review Letters80(25), 5695–5697. arXiv:quant-ph/9709058.
Schumacher,B &Westmoreland,M. D (2002), ‘Approximate quantum error correction’,Quantum Information Processing1(1/2), 5–12. arXiv:quant-ph/0112106.
Sen,P (2011), ‘Achieving the Han–Kobayashi inner bound for the quantum interference channel by sequential decoding’. arXiv:1109.0802.
Seshadreesan,K.P.,Berta,M &Wilde,M. M (2015), ‘Rényi squashed entanglement, discord, and relative entropy differences’,Journal of Physics A: Mathematical and Theoretical48(39), 395303. arXiv:1410.1443.
Seshadreesan,K.P.,Takeoka,M &Wilde,M. M (2015), ‘Bounds on entanglement distillation and secret key agreement for quantum broadcast channels’,IEEETransactions on Information Theory62(5), May 2016, 2849–2866. arXiv:1503.08139.
Seshadreesan,K.P. &Wilde,M. M (2015), ‘Fidelity of recovery, squashed entanglement, and measurement recoverability’,Physical Review A92(4), 042321. arXiv:1410.1441.
Shannon,C.E. (1948), ‘A mathematical theory of communication’,Bell System Technical Journal27, 379–423.
Shor,P.W. (1994), ‘Algorithms for quantum computation: Discrete logarithms and factoring’, inProceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press,Los Alamitos, California, pp. 124–134.
Shor,P.W. (1995), ‘Scheme for reducing decoherence in quantum computer memory’,Physical Review A52(4), R2493–R2496.
Shor,P.W. (1996), ‘Fault-tolerant quantum computation’,Annual IEEE Symposium on Foundations of Computer Science p. 56. arXiv:quant-ph/9605011.
Shor,P.W. (2002a), ‘Additivity of the classical capacity of entanglement-breaking quantum channels’,Journal of Mathematical Physics43(9), 4334–4340. arXiv:quantph/ 0201149.
Shor,P.W. (2002b), ‘The quantum channel capacity and coherent information’, in Lecture Notes, MSRI Workshop on Quantum Computation.
Shor,P.W. (2004a), ‘Equivalence of additivity questions in quantum information theory’,Communications in Mathematical Physics246(3), 453–472. arXiv:quantph/0305035.
Shor,P.W. (2004b),Quantum Information, Statistics, Probability (Dedicated to A. S. Holevo on the occasion of his 60th Birthday): The classical capacity achievable by a quantum channel assisted by limited entanglement, Rinton Press, Inc. arXiv:quantph/0402129.
Smith,G (2006), ‘Upper and Lower Bounds on Quantum Codes’, PhD thesis, California Institute of Technology.
Smith,G (2008), ‘Private classical capacity with a symmetric side channel and its application to quantum cryptography’,Physical Review A78(2), 022306. arXiv:0705.
Smith,G.,Renes,J. M &Smolin,J. A (2008), ‘Structured codes improve the Bennett–Brassard-84 quantum key rate’,Physical Review Letters100(17), 170502. arXiv:quant-ph/0607018.
Smith,G &Smolin,J. A (2007), ‘Degenerate quantum codes for Pauli channels’,Physical Review Letters98(3), 030501. arXiv:quant-ph/0604107.
Smith,G.,Smolin,J. A &Yard,J (2011), ‘Quantum communication with Gaussian channels of zero quantum capacity’,Nature Photonics5, 624–627. arXiv:1102.4580.
Smith,G &Yard,J (2008), ‘Quantum communication with zero-capacity channels’,Science321(5897), 1812–1815. arXiv:0807.4935.
Steane,A.M. (1996), ‘Error correcting codes in quantum theory’,Physical Review Letters77(5), 793–797.
Stein,E.M. (1956), ‘Interpolation of linear operators’,Transactions of the American Mathematical Society83(2), 482–492.
Stinespring,W.F. (1955), ‘Positive functions on C*-algebras’,Proceedings of the American Mathematical Society6, 211–216.
Sutter,D.,Fawzi,O &Renner,R (2016), ‘Universal recovery map for approximate markov chains’,Proceedings of the Royal Society A472(2186). arXiv:1504.07251.
Sutter,D.,Tomamichel,M &Harrow,A. W (2015), ‘Strengthened monotonicity of relative entropy via pinched Petz recovery map’,IEEE Transactions on Information Theory62(5), 2016, 2907–2913. arXiv:1507.00303.
Tomamichel,M (2012), ‘A Framework for Non-Asymptotic Quantum Information Theory’, PhD thesis, ETH Zurich. arXiv:1203.2142.
Tomamichel,M (2016),Quantum Information Processing with Finite Resources — Mathematical Foundations, Vol.5 of SpringerBriefs in Mathematical Physics, Springer. arXiv:1504.00233.
Tomamichel,M.,Berta,M &Renes,J. M (2015), ‘Quantum coding with finite resources’,Nature Communications7:11419 (2016). arXiv:1504.04617.
Tomamichel,M.,Colbeck,R &Renner,R (2009), ‘A fully quantum asymptotic equipartition property’,IEEE Transactions on Information Theory55(12), 5840–5847. arXiv:0811.1221.
Tomamichel,M.,Colbeck,R &Renner,R (2010), ‘Duality between smooth minand max-entropies’,IEEE Transactions on Information Theory56(9), 4674–4681. arXiv:0907.5238.
Tomamichel,M &Renner,R (2011), ‘Uncertainty relation for smooth entropies’,Physical Review Letters106(11), 110506. arXiv:1009.2015.
Tomamichel,M &Tan,V.Y.F. (2015), ‘Second-order asymptotics for the classical capacity of image-additive quantum channels’,Communications in Mathematical Physics338(1), 103–137. arXiv:1308.6503.
Tomamichel,M.,Wilde,M. M &Winter,A (2014), ‘Strong converse rates for quantum communication’. arXiv:1406.2946.
Tsirelson,B.S. (1980), ‘Quantum generalizations of Bell's inequality’,Letters in Mathematical Physics4(2), 93–100.
Tyurin,I.S. (2010), ‘An improvement of upper estimates of the constants in the Lyapunov theorem’,Russian Mathematical Surveys65(3), 201–202.
Uhlmann,A (1976), ‘The “transition probability” in the state space of a *-algebra’,Reports on Mathematical Physics9(2), 273–279.
Uhlmann,A (1977), ‘Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in an interpolation theory’,Communications in Mathematical Physics54(1), 21–32.
Umegaki,H (1962), ‘Conditional expectations in an operator algebra IV (entropy and information)’,Kodai Mathematical Seminar Reports14(2), 59–85.
Unruh,W.G. (1995), ‘Maintaining coherence in quantum computers’,Physical Review A51(2), 992–997. arXiv:hep-th/9406058.
Vedral,V &Plenio,M. B (1998), ‘Entanglement measures and purification procedures’,Physical Review A57(3), 1619–1633. arXiv:quant-ph/9707035.
von Kretschmann,D (2007), ‘Information Transfer through Quantum Channels’, PhD thesis, Technische Universität Braunschweig.
von Neumann,J (1996),Mathematical Foundations of Quantum Mechanics, Princeton University Press.
Wang,L &Renner,R (2012), ‘One-shot classical–quantum capacity and hypothesis testing’,Physical Review Letters108(20), 200501. arXiv:1007.5456.
Watrous,J (2015), Theory of Quantum Information. Available at https://cs.uwaterloo.ca/∼watrous/TQI/.
Wehrl,A (1978), ‘General properties of entropy’,Reviews of Modern Physics50(2), 221–260.
Werner,R.F. (1989), ‘Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model’,Physical Review A40(8), 4277–4281.
Wiesner,S (1983), ‘Conjugate coding’,SIGACT News15(1), 78–88.
Wilde,M.M. (2011), ‘Comment on “Secret-key-assisted private classical communication capacity over quantum channels”’,Physical Review A83(4), 046303.
Wilde,M.M. (2013), ‘Sequential decoding of a general classical–quantum channel’,Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences469(2157). arXiv:1303.0808.
Wilde,M.M. (2014), ‘Multipartite quantum correlations and local recoverability’,Proceedings of the Royal Society A471, 20140941. arXiv:1412.0333.
Wilde,M.M. (2015), ‘Recoverability in quantum information theory’,Proceedings of the Royal Society A471(2182), 20150338. arXiv:1505.04661.
Wilde,M.M. &Brun,T. A (2008), ‘Unified quantum convolutional coding’, inProceedings of the IEEE International Symposium on Information Theory, Toronto, Ontario,Canada, pp. 359–363. arXiv:0801.0821.
Wilde,M.M. &Guha,S (2012), ‘Explicit receivers for pure-interference bosonic multiple access channels’,Proceedings of the 2012 International Symposium on Information Theory and its Applications pp. 303–307. arXiv:1204.0521.
Wilde,M.M.,Hayden,P,Buscemi,F &Hsieh,M-H. (2012), ‘The informationtheoretic costs of simulating quantum measurements’,Journal of Physics A: Mathematical and Theoretical45(45), 453001. arXiv:1206.4121.
Wilde,M.M.,Hayden,P &Guha,S (2012a), ‘Information trade-offs for optical quantum communication’,Physical Review Letters108(14), 140501. arXiv:1105.0119.
Wilde,M.M.,Hayden,P &Guha,S (2012b), ‘Quantum trade-off coding for bosonic communication’,Physical Review A86(6), 062306. arXiv:1105.0119.
Wilde,M.M. &Hsieh,M-H. (2010), ‘Entanglement generation with a quantum channel and a shared state’,Proceedings of the 2010 IEEE International Symposium on Information Theory pp. 2713–2717. arXiv:0904.1175.
Wilde,M.M. &Hsieh,M-H. (2012a), ‘Public and private resource trade-offs for a quantum channel’,Quantum Information Processing11(6), 1465–1501. arXiv:1005.3818.
Wilde,M.M. &Hsieh,M-H. (2012b), ‘The quantum dynamic capacity formula of a quantum channel’,Quantum Information Processing11(6), 1431–1463. arXiv:1004.0458.
Wilde,M.M.,Krovi,H &Brun,T. A (2007), ‘Coherent communication with continuous quantum variables’,Physical Review A75(6), 060303(R). arXiv:quantph/0612170.
Wilde,M.M.,Renes,J. M &Guha,S (2016), ‘Second-order coding rates for pure-loss bosonic channels’,Quantum Information Processing15(3), 1289–1308. arXiv:1408.5328.
Wilde,M.M. &Savov,I (2012), ‘Joint source-channel coding for a quantum multiple access channel’,Journal of Physics A: Mathematical and Theoretical45(43), 435302. arXiv:1202.3467.
Wilde,M.M. &Winter,A (2014), ‘Strong converse for the quantum capacity of the erasure channel for almost all codes’, Proceedings of the 9th Conference on the Theory of Quantum Computation, Communication and Cryptography. arXiv:1402.3626.
Wilde,M.M.,Winter,A &Yang,D (2014), ‘Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy’,Communications in Mathematical Physics331(2), 593–622. arXiv:1306.1586.
Winter,A (1999a), ‘Coding theorem and strong converse for quantum channels’,IEEETransactions on Information Theory45(7), 2481–2485. arXiv:1409.2536.
Winter,A (1999b), ‘Coding Theorems of Quantum Information Theory’, PhD thesis, Universität Bielefeld. arXiv:quant-ph/9907077.
Winter,A (2001), ‘The capacity of the quantum multiple access channel’,IEEETransactions on Information Theory47(7), 3059–3065. arXiv:quant-ph/9807019.
Winter,A (2004), “‘Extrinsic” and “intrinsic” data in quantum measurements: asymptotic convex decomposition of positive operator valued measures’,Communications in Mathematical Physics244(1), 157–185. arXiv:quant-ph/0109050.
Winter,A (2007), ‘The maximum output p-norm of quantum channels is not multiplicative for any p > 2’. arXiv:0707.0402.
Winter,A (2015a), ‘Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints’. arXiv:1507.07775.
Winter,A (2015b), ‘Weak locking capacity of quantum channels can be much larger than private capacity’,Journal of Cryptology pp. 1–21. arXiv:1403.6361.
Winter,A &Li,K (2012), ‘A stronger subadditivity relation?’, www.maths.bris.ac. uk/$\sim$csajw/stronger$_$subadditivity.pdf.
Winter,A &Massar,S (2001), ‘Compression of quantum-measurement operations’,Physical Review A64(1), 012311. arXiv:quant-ph/0012128.
Wolf,M.M.,Cubitt,T. S &Perez-Garcia,D (2011), ‘Are problems in quantum information theory (un)decidable?’. arXiv:1111.5425.
Wolf,M.M. &Pérez-García,D (2007), ‘Quantum capacities of channels with small environment’,Physical Review A75(1), 012303. arXiv:quant-ph/0607070.
Wolf,M.M.,Pérez-García,D &Giedke,G (2007), ‘Quantum capacities of bosonic channels’,Physical Review Letters98(13), 130501. arXiv:quant-ph/0606132.
Wolfowitz,J (1978),Coding theorems of information theory, Springer-Verlag.
Wootters,W.K. &Zurek,W. H (1982), ‘A single quantum cannot be cloned’,Nature299, 802–803.
Wyner,A.D. (1975), ‘The wire-tap channel’,Bell System Technical Journal54(8), 1355–1387.
Yard,J (2005), ‘Simultaneous classical–quantum capacities of quantum multiple access channels’, PhD thesis, Stanford University,Stanford, CA. arXiv:quant-ph/0506050.
Yard,J &Devetak,I (2009), ‘Optimal quantum source coding with quantum side information at the encoder and decoder’,IEEE Transactions on Information Theory55(11), 5339–5351. arXiv:0706.2907.
Yard,J.,Devetak,I &Hayden,P (2005), ‘Capacity theorems for quantum multiple access channels’, inProceedings of the International Symposium on Information Theory, Adelaide,Australia, pp. 884–888. arXiv:cs/0508031.
Yard,J.,Hayden,P &Devetak,I (2008), ‘Capacity theorems for quantum multipleaccess channels: Classical–quantum and quantum–quantum capacity regions’,IEEETransactions on Information Theory54(7), 3091–3113. arXiv:quant-ph/0501045.
Yard,J.,Hayden,P &Devetak,I (2011), ‘Quantum broadcast channels’,IEEETransactions on Information Theory57(10), 7147–7162. arXiv:quant-ph/0603098.
Ye,M-Y.,Bai,Y-K. &Wang,Z. D (2008), ‘Quantum state redistribution based on a generalized decoupling’,Physical Review A78(3), 030302. arXiv:0805.1542.
Yen,B.J. &Shapiro,J. H (2005), ‘Multiple-access bosonic communications’,Physical Review A72(6), 062312. arXiv:quant-ph/0506171.
Yeung,R.W. (2002),A First Course in Information Theory, Information Technology: Transmission, Processing, and Storage, Springer (Kluwer Academic/Plenum Publishers),New York, NY.
Zhang,L (2014), ‘A lower bound of quantum conditional mutual information’,J. Phys. A: Math. Theor.47(2014) 415303. arXiv:1403.1424.
Zhang,Z (2007), ‘Estimating mutual information via Kolmogorov distance’,IEEE Transactions on Information Theory53(9), 3280–3282.
Zurek,W.H. (2000), ‘Einselection and decoherence from an information theory perspective’,Annalen der Physik9(11–12), 855–864. arXiv:quant-ph/0011039.