- Cláudio Gomes ORCID:orcid.org/0000-0001-6292-02221,2,3,
- Gabriel Falcao ORCID:orcid.org/0000-0001-9805-67474,5,
- Luís Paquete ORCID:orcid.org/0000-0001-7525-89014,6 &
- …
- João Paulo Fernandes ORCID:orcid.org/0000-0002-1952-94601,2
414Accesses
2Citations
Abstract
Quantum Computing (QC) is regarded with a mix of amazement, excitement, and skepticism. While quantum computers have been shown to outperform classical ones in particular computational tasks, their effective applicability to general-purpose problems remains under-studied. We shed light on the practical use of QC to tackle a combinatorial optimization problem in Finance, the Portfolio Optimization Problem (POP). We present an in-depth empirical study on the influence that configurable parameters of both a state-of-the-art adiabatic quantum computer and POP itself can have on the overall quality of the solutions we obtain. Our results show that some of these parameters, such as chain strength and a number of reads, have a significant statistical effect, while others, such as anneal schedule and embedding, do not. Our results also show that the quality of the solutions returned by a quantum computer, given a quadratic unconstrained binary optimization formulation of POP from the literature, is still far from the quality of the solutions produced by a classical computer using an exact algorithm. We believe the conclusions drawn from our study are valuable contributions to the utilization of adiabatic quantum computers in practice, not only in the context of POP but also for other application domains.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.































Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FGSL, Buell DA, Burkett B, Chen Y, Chen Z, Chiaro B, Collins R, Courtney W, Dunsworth A, Farhi E, Foxen B, Fowler A, Gidney C, Giustina M, Graff R, Guerin K, Habegger S, Harrigan MP, Hartmann MJ, Ho A, Hoffmann M, Huang T, Humble TS, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Kelly J, Klimov PV, Knysh S, Korotkov A, Kostritsa F, Landhuis D, Lindmark M, Lucero E, Lyakh D, Mandrà S, McClean JR, McEwen M, Megrant A, Mi X, Michielsen K, Mohseni M, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, Ostby E, Petukhov A, Platt JC, Quintana C, Rieffel EG, Roushan P, Rubin NC, Sank D, Satzinger KJ, Smelyanskiy V, Sung KJ, Trevithick MD, Vainsencher A, Villalonga B, White T, Yao ZJ, Yeh P, Zalcman A, Neven H, Martinis JM. Quantum supremacy using a programmable superconducting processor. Nature. 2019;574(7779):505–10.https://doi.org/10.1038/s41586-019-1666-5 (Accessed 2021-01-16).
Zhong H-S, Wang H, Deng Y-H, Chen M-C, Peng L-C, Luo Y-H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X-Y, Zhang W-J, Li H, Li Y, Jiang X, Gan L, Yang G, You L, Wang Z, Li L, Liu N-L, Lu C-Y, Pan J-W. Quantum computational advantage using photons. Science. 2020;370(6523):1460–3.https://doi.org/10.1126/science.abe8770.
Systems D-W. The road to advantage 2020.https://medium.com/d-wave/the-road-to-advantage-33690b762aca. (Accessed 2022-05-13)
Systems D-W. D-Wave’s next-generation roadmap: bringing clarity to practical quantum computing. 2021.https://dwave.medium.com/d-waves-next-generation-roadmap-bringing-clarity-to-practical-quantum-computing-192b3275c73d (Accessed 2022-05-13).
Honeywell International Inc. Honeywell sets another record for quantum computing performance. Retrieved October 6, 2021, fromhttps://www.honeywell.com/us/en/news/2021/07/honeywell-sets-another-record-for-quantum-computing-performance 2021.
Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM. Validating quantum computers using randomized model circuits. Phys Rev A. 2019.https://doi.org/10.1103/physreva.100.032328.
Ushijima-Mwesigwa H, Shaydulin R, Negre CFA, Mniszewski SM, Alexeev Y, Safro I. Multilevel combinatorial optimization across quantum architectures. ACM Trans Quantum Comput. 2021.https://doi.org/10.1145/3425607.
Tabi Z, El-Safty KH, Kallus Z, Hága P, Kozsik T, Glos A, Zimborás Z. Quantum optimization for the graph coloring problem with space-efficient embedding. In: 2020 IEEE International Conference on Quantum Computing and Engineering (QCE). 2020, pp. 56–62 2020.https://doi.org/10.1109/QCE49297.2020.00018
Krauss T, McCollum J. Solving the network shortest path problem on a quantum Annealer. IEEE Trans Quantum Eng. 2020;1:1–12.https://doi.org/10.1109/TQE.2020.3021921.
Lucas A. Ising formulations of many np problems. Front Phys. 2014;2:5.https://doi.org/10.3389/fphy.2014.00005.
Nielsen MA, Chuang IL. Quantum computation and quantum information: 10th anniversary edition. Cambridge University Press, 2010.https://doi.org/10.1017/CBO9780511976667
Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput. 1997;26(5):1484–509.https://doi.org/10.1137/s0097539795293172.
Mavroeidis V, Vishi KDM, Jøsang A. The impact of quantum computing on present cryptography. Int J Adv Comput Sci Appl. 2018.https://doi.org/10.14569/ijacsa.2018.090354.
Arapinis M, Lamprou N, Kashefi E, Pappa A. Definitions and security of quantum electronic voting. ACM Trans Quantum Comput. 2021.https://doi.org/10.1145/3450144.
Doosti M, Kumar N, Delavar M, Kashefi E. Client-server identification protocols with quantum puf. ACM Trans Quantum Comput. 2021.https://doi.org/10.1145/3484197.
D-Wave Systems Inc. D-Wave System Documentation documentation. Retrieved September 9, 2021, fromhttps://docs.dwavesys.com/docs/latest/c_gs_1.html 2021
Boothby K, Bunyk P, Raymond J, Roy A. Next-generation topology of D-Wave quantum processors; 2020.https://doi.org/10.48550/arXiv.2003.00133.
Li M, Yao X. Quality evaluation of solution sets in multiobjective optimisation: a survey. ACM Comput Surv (CSUR). 2019;52(2):1–38.
Kato T. On the adiabatic theorem of quantum mechanics. J Phys Soc Jpn. 1950;5(6):435–9.https://doi.org/10.1143/JPSJ.5.435.
LaPierre R. Adiabatic quantum computing. Cham: Springer; 2021. p. 323–6.https://doi.org/10.1007/978-3-030-69318-3_23.
Pelofske E, Hahn G, Djidjev H. Decomposition algorithms for solving NP-hard problems on a quantum annealer. J Signal Process Syst. 2020;93(4):405–20.https://doi.org/10.1007/s11265-020-01550-1.
D-Wave Systems Inc. Programming the D-Wave QPU: setting the chain strength. Retrieved September 9, 2021, fromhttps://www.dwavesys.com/media/vsufwv1d/14-1041a-a_setting_the_chain_strength.pdf. 2021.
Boyd SP, Vandenberghe L. Convex optimization. Cambridge: Cambridge University Press; 2004.
Lee J. A first course in combinatorial optimization. Cambridge texts in applied mathematics. Cambridge: Cambridge University Press; 2004.https://doi.org/10.1017/CBO9780511616655.
Coffey MW. Adiabatic quantum computing solution of the knapsack problem 2017.https://doi.org/10.48550/arXiv.1701.05584.
Phillipson F, Bhatia HS. Portfolio optimisation using the D-wave quantum annealer 2020.https://doi.org/10.48550/arXiv.2012.01121.
Law J. A dictionary of finance and banking. Oxford: Oxford University Press; 2014.
Markowitz H. Portfolio selection*. J Financ. 1952;7(1):77–91.https://doi.org/10.1111/j.1540-6261.1952.tb01525.x.
Egger DJ, Gambella C, Marecek J, McFaddin S, Mevissen M, Raymond R, Simonetto A, Woerner S, Yndurain E. Quantum computing for finance: state-of-the-art and future prospects. IEEE Trans Quantum Eng. 2020;1:1–24.https://doi.org/10.1109/tqe.2020.3030314.
Barkoutsos PK, Nannicini G, Robert A, Tavernelli I, Woerner S. Improving variational quantum optimization using cvar. Quantum. 2020.https://doi.org/10.22331/q-2020-04-20-256.
Voorneveld M. Characterization of pareto dominance. Oper Res Lett. 2003;31(1):7–11.https://doi.org/10.1016/S0167-6377(02)00189-X.
Ehrgott M. Multiobjective optimization. AI Mag. 2008;29:47–57.https://doi.org/10.1007/978-0-387-76635-5_6.
D-Wave Systems Inc. Quantum programming 101: solving a problem from end to end | D-Wave webinar.https://www.youtube.com/watch?v=Q4FE4jou5CA (Accessed 2021-06-28).
Kalayci CB, Ertenlice O, Akbay MA. A comprehensive review of deterministic models and applications for mean-variance portfolio optimization. Expert Syst Appl. 2019;125:345–68.https://doi.org/10.1016/j.eswa.2019.02.011.
Armananzas R, Lozano JA. A multiobjective approach to the portfolio optimization problem. In: 2005 IEEE Congress on Evolutionary Computation, 2005;2, pp. 1388–13952 .https://doi.org/10.1109/CEC.2005.1554852
Zhu H, Wang Y, Wang K, Chen Y. Particle swarm optimization (pso) for the constrained portfolio optimization problem. Expert Syst Appl. 2011;38(8):10161–9.https://doi.org/10.1016/j.eswa.2011.02.075.
Mendonça GHM, Ferreira FGDC, Cardoso RTN, Martins FVC. Multi-attribute decision making applied to financial portfolio optimization problem. Expert Syst Appl. 2020;158:113527.https://doi.org/10.1016/j.eswa.2020.113527.
Mugel S, Kuchkovsky C, Sanchez E, Fernandez-Lorenzo S, Luis-Hita J, Lizaso E, Orus R. Dynamic portfolio optimization with real datasets using quantum processors and quantum-inspired tensor networks 2020.https://doi.org/10.48550/arXiv.2007.00017
Grant E, Humble TS, Stump B. Benchmarking quantum annealing controls with portfolio optimization. Phys Rev Appl. 2021;15:014012.https://doi.org/10.1103/PhysRevApplied.15.014012.
Mcgill R, Tukey JW, Larsen WA. Variations of box plots. Am Stat. 1978;32(1):12–6.https://doi.org/10.1080/00031305.1978.10479236.
Iman RL, Conover WJ. The use of the rank transform in regression. Technometrics. 1979;21(4):499–509.https://doi.org/10.1080/00401706.1979.10489820.
Acknowledgements
The first author was supported by the Programme New Talents in Quantum Technologies of the Gulbenkian Foundation (Portugal). This work was partially funded by national funds through the Fundação para a Ciência e a Tecnologia within the scope of the project CISUC – UID/CEC/00326/2020; by Instituto de Telecomunicações and Fundação para a Ciência e a Tecnologia under grant UIDB/50008/2020; and by the Artificial Intelligence and Computer Science Laboratory, University of Porto (LIACC), FCT/UID/CEC/0027/2020, funded by national funds through the FCT/MCTES (PIDDAC).
Author information
Authors and Affiliations
Department of Informatics Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal
Cláudio Gomes & João Paulo Fernandes
Artificial Intelligence and Computer Science Laboratory (LIACC), Rua Dr. Roberto Frias, s/n, Porto, 4200-465, Portugal
Cláudio Gomes & João Paulo Fernandes
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, USA
Cláudio Gomes
Faculty of Sciences and Technology of the University of Coimbra, Rua Sílvio Lima, Universidade de Coimbra – Polo II, Coimbra, 3030-790, Portugal
Gabriel Falcao & Luís Paquete
Instituto de Telecomunicações, Coimbra, Portugal
Gabriel Falcao
Centre for Informatics and Systems of the University of Coimbra, Polo II, Pinhal de Marrocos, Coimbra, 3030-290, Portugal
Luís Paquete
- Cláudio Gomes
You can also search for this author inPubMed Google Scholar
- Gabriel Falcao
You can also search for this author inPubMed Google Scholar
- Luís Paquete
You can also search for this author inPubMed Google Scholar
- João Paulo Fernandes
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toCláudio Gomes.
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Research Involving Human Participants and/or Animals
Not applicable.
Informed Consent
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gomes, C., Falcao, G., Paquete, L.et al. An Empirical Study on the Use of Quantum Computing for Financial Portfolio Optimization.SN COMPUT. SCI.3, 335 (2022). https://doi.org/10.1007/s42979-022-01215-9
Received:
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative