Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Experimental Investigation on Saline Water Purification Using Reverse Osmosis by a Novus Biomimetic Membrane

  • Research Article
  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

A substantial amount of Earth’s water is inadequate for human consumption while local demand is outstripping traditional supplies in many world regions; thereby, brackish and seawater treatment has become a prerequisite. This investigation suggested a complete design of an RO-based desalination filter with a multilayer biomimetic membrane. The study demonstrated a comprehensive method for experimentally fabricating a proprietary biomaterial-based multilayer nano-porous membrane. This analysis revealed that Silk Nano-Fibril (SNF) and Hydroxyapatite (HAP) extracted fromBombyx Mori silkworm cocoons may be utilized to manufacture highly methodical multilayer membranes by incorporating protein-self-assembly and in-situ-bio-mineralization. Membrane’s aquaporin layer containing lipid-bilayers has rapid water permeability and high efficacy at eliminating salt ions and contaminants. The 4 µm thick SNF/HAP membrane showed a considerable decrease in salinity, with a salt rejection of 93.33%. The proposed membrane had a saline water permeability of 6.58 LMH/bar, almost 61.09% higher than conventional TFC membranes. Hydrophobic barrier and spiral-wrapped filter architecture of the membrane enable low fouling and self-cleaning properties. The schematic filter design and biomimetic fabrication of the SNF/HAP membrane have formulated a conceptual framework that might direct to the broad-scale, low-cost RO water purification filters, increasing the efficiency of water desalination and boosting the effectiveness of water treatment technologies to reduce potable water scarcity.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Esmaeilion, F., & Electrodialysis, E. D. (2020). Hybrid renewable energy systems for desalination.Applied Water Science,10(84). 

  2. Yüksel, M. E. E. (2018).Desalination and water treatment. IntechOpen.

  3. Jones, E., Qadir, M., Van Vliet, M. T. H., Smakhtin, V., & Kang, S. (2019). Science of the total environment the state of desalination and brine production: A global outlook.Science of the Total Environment,657, 1343–1356. 

    Article  Google Scholar 

  4. Malaeb, L., & Ayoub, G. M. (2011). Reverse osmosis technology for water treatment: State of the art review.Desalination,267, 1–8. 

    Article  Google Scholar 

  5. Swaminathan, J., Tow, E. W., Stover, R. L., & Lienhard, J. H. (2019). Practical aspects of batch RO design for energy-efficient seawater desalination.Desalination,470, 114097. 

    Article  Google Scholar 

  6. Sun, L., Huang, H., & Peng, X. (2013). Laminar MoS2 membranes for molecule separation.Chemical Communications,49, 10718–10720. 

    Article  Google Scholar 

  7. Gao, S. J., Qin, H., Liu, P., & Jin, J. (2015). SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules.Journal of Materials Chemistry A,3, 6649–6654. 

    Article  Google Scholar 

  8. Joshi, R. K., Carbone, P., Wang, F. C., Kravets, V. G., Su, Y., Grigorieva, I. V., Wu, H. A., Geim, A. K., & Nair, R. R. (2014). Precise and ultrafast molecular sieving through graphene oxide membranes.Science (New York, N.Y.),343, 752–754. 

    Article  Google Scholar 

  9. Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., Sun, L., Xu, Z., & Peng, X. (2013). Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.Nature Communications,4, 1–9. 

    Article  Google Scholar 

  10. Lee, Y. M., Jung, B., Kim, Y. H., Park, A. R., Han, S., Choe, W.-S., & Yoo, P. J. (2014). Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film.Advanced Materials,26, 3899–3904. 

    Article  Google Scholar 

  11. Sun, L., Ying, Y., Huang, H., Song, Z., Mao, Y., Xu, Z., & Peng, X. (2014). Ultrafast molecule separation through layered WS(2) nanosheet membranes.ACS Nano,8, 6304–6311. 

    Article  Google Scholar 

  12. Roy, K., Mukherjee, A., Maddela, N. R., Chakraborty, S., Shen, B., Li, M., Du, D., Peng, Y., Lu, F., & Garciá Cruzatty, L. C. (2020). Outlook on the bottleneck of carbon nanotube in desalination and membrane-based water treatment—a review.Journal of Environmental Chemical Engineering,8, 103572. 

    Article  Google Scholar 

  13. Meier, C., & Welland, M. E. (2011). Wet-spinning of amyloid protein nanofibers into multifunctional high-performance biofibers.Biomacromolecules,12, 3453–3459. 

    Article  Google Scholar 

  14. Li, C., Born, A.-K., Schweizer, T., Zenobi-Wong, M., Cerruti, M., & Mezzenga, R. (2014). Amyloid-hydroxyapatite bone biomimetic composites.Advanced Materials,26, 3207–3212. 

    Article  Google Scholar 

  15. Ling, S., Qin, Z., Huang, W., Cao, S., Kaplan, D. L., & Buehler, M. J. (2017). Design and function of biomimetic multilayer water purification membranes.Science Advances,3, 1–12. 

    Article  Google Scholar 

  16. Ling, S., Jin, K., Kaplan, D. L., & Buehler, M. J. (2016). Ultrathin free-standing bombyx mori silk nanofibril membranes.Nano Letters,16, 3795–3800. 

    Article  Google Scholar 

  17. Wang, M., Wang, Z., Wang, X., Wang, S., Ding, W., & Gao, C. (2015). Layer-by-layer assembly of aquaporin Z-incorporated biomimetic membranes for water purification.Environmental Science and Technology,49, 3761–3768. 

    Article  Google Scholar 

  18. Fuwad, A., Ryu, H., Malmstadt, N., Kim, S. M., & Jeon, T. J. (2019). Biomimetic membranes as potential tools for water purification: Preceding and future avenues.Desalination,458, 97–115. 

    Article  Google Scholar 

  19. Vella, F. (1998). The cell. A molecular approach.Biochemical Education,26(1), 98–99.https://doi.org/10.1016/s0307-4412(98)00065-x.

  20. Hydro, C., Ferreres, X. R., Font, A. R., Ibrahim, A., Maximilien, N., Lumbroso, D., Hurford, A., Winpenny, J., Wade, S., Sataloff, R. T., Johns, M. M., Kost, K. M., State-of-the-art, T., Motivation, T., Yaacob, N., Abdullah, M., Ismail, M., Medina, M., Talarico, T. L., … Chung, T. C. (2013). We are IntechOpen, the world ’ s leading publisher of Open Access books Built by scientists, for scientists TOP 1 %.INTECH,32, 137–144.

    Google Scholar 

  21. Joseph, N., Ahmadiannamini, P., Hoogenboom, R., & Vankelecom, I. F. J. (2014). Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation.Polymer Chemistry,5, 1817–1831. 

    Article  Google Scholar 

  22. Walaa. (2012). Low Cost Nanomaterials for Water Desalination and Purification. Nano Tech,27(4500103693), 1–28.

  23. Azevedo, F. (2014). Renewable Energy Powered Desalination Systems: Technologies and Market Analysis, 68. Retrieved fromhttps://www.aler-renovaveis.org/contents/lerpublication/ulfc112531_tm_francisco_azevedo.pdf.

  24. Ahmadvand, S., Abbasi, B., Azarfar, B., Elhashimi, M., Zhang, X., & Abbasi, B. (2019). Looking beyond energy efficiency: An applied review of water desalination technologies and an introduction to capillary-driven desalination.Water (Switzerland), 11.

  25. Autoridad Nacional del Servicio Civil. (2021). No Title.Angewandte Chemie International Edition,6, 951–952.

  26. Youssef, P. G., Al-Dadah, R. K., & Mahmoud, S. M. (2014). Comparative analysis of desalination technologies.Energy Procedia,61, 2604–2607. 

    Article  Google Scholar 

  27. Johnson, C. (2014). Advances in pretreatment and clarification technologies.Comprehensive Water Quality and Purification,2, 60–74. 

    Article  Google Scholar 

  28. Russell, D. (2019). Granular filtration theory and practice.Practical Waste Water Treatment

    Article  Google Scholar 

  29. Kramarova, Y., Agarwal, A., & Gul, A. (2019). Comparative analysis of the effectiveness of various Methods of water purification in india.

  30. El-Dessouky, H. T., & Ettouney, H. M. (2002). Reverse Osmosis. Fundamentals of Salt Water Desalination, 409–437. (n.d.). Elsevier. Retrieved fromhttps://linkinghub.elsevier.com/retrieve/pii/B9780444508102500099.

  31. Wiles, L., & Peirtsegaele, E. (2018). Reverse osmosis : A history and explanation of the technology and how it became so important for desalination. In: 79th International Water Conference, Scottsdale, pp. 18–49.

  32. Qin, Z., & Buehler, M. J. (2013). Impact tolerance in mussel thread networks by heterogeneous material distribution.Nature Communications,4, 1–8. 

    Article  Google Scholar 

  33. Bertaud, J., Qin, Z., & Buehler, M. J. (2009). Amino acid sequence dependence of nanoscale deformation mechanisms in alpha-helical protein filaments.The Journal of Strain Analysis for Engineering Design,44, 517–531. 

    Article  Google Scholar 

  34. Lin, T.-J., & Heinz, H. (2016). Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces.Journal of Physical Chemistry C,120, 4975–4992. 

    Article  Google Scholar 

  35. Ling, S., Qin, Z., Huang, W., Cao, S., Kaplan, D. L., & Buehler, M. J. (2017). Design and function of biomimetic multilayer water purification membranes.Science Advances,3, e1601939. 

    Article  Google Scholar 

  36. Ling, S., Li, C., Adamcik, J., Shao, Z., Chen, X., & Mezzenga, R. (2014). Modulating materials by orthogonally oriented β-strands: composites of amyloid and silk fibroin fibrils.Advanced Materials,26, 4569–4574. 

    Article  Google Scholar 

  37. Singer, S. J., & Nicolson, G. L. (1972). The fluid mosaic model of the structure of cell membranes.Science (New York, N.Y.),175, 720–731. 

    Article  Google Scholar 

  38. Fane, A. G., Wang, R., & Hu, M. X. (2015). Synthetic membranes for water purification: Status and future.Angewandte Chemie International Edition,54, 3368–3386. 

    Article  Google Scholar 

  39. Shi, X., Tal, G., Hankins, N. P., & Gitis, V. (2014). Fouling and cleaning of ultrafiltration membranes: A review.Journal of Water Process Engineering,1, 121–138. 

    Article  Google Scholar 

  40. Ulbricht, M. (2006). Advanced functional polymer membranes.Polymer,47, 2217–2262. 

    Article  Google Scholar 

  41. Li, X., Chou, S., Wang, R., Shi, L., Fang, W., Chaitra, G., Tang, C. Y., Torres, J., Hu, X., & Fane, A. G. (2015). Nature gives the best solution for desalination: Aquaporin-based hollow fiber composite membrane with superior performance.Journal of Membrane Science,494, 68–77. 

    Article  Google Scholar 

  42. Rafique, M. M., Abd-Ur-Rehman, H. M., & Anwar, M. K. (2015). Fluid Mechanics in Membrane Filtration: A Simplified Analytical Approach.International Journal of Scientific Research Engineering and Technology (IJSRET),4(5).www.ijsret.org. Accessed 23 June 2021.

  43. Farmer, R. W., Dussert, B. W., & Kovacic, S. L. (1996). Improved granular activated carbon for the stabilization of wastewater pH.ACS Division of Fuel Chemistry Preprints,41, 456–458.

    Google Scholar 

  44. Heydari, M. M., Abbasi, A., Rohani, S. M., & Hosseini, S. M. A. (2013). Correlation study and regression analysis of drinking water quality in Kashan City, Iran.Walailak Journal of Science and Technology,10, 315–324. 

    Article  Google Scholar 

  45. Etim, E., Odoh, R., & Umoh, S. D. (2013). Water quality index for the assessment of water quality from different sources in the Niger Delta Region of Nigeria.Frontiers in Science, 3, 89–95.

  46. Al, E. T. (2011). Application of index analysis to evaluate the water quality of the Tuul River in Mongolia.Journal of Water Resource and Protection,3, 398–414. 

    Article  Google Scholar 

  47. United States Environmental Protection Agency. (2006).Voluntary estuary monitoring manual chapter 14: Salinity (p. 14.1–14.5). EPA.

  48. Mishonov, A. (2014).World Ocean Atlas 2005 volume 2: Salinity. NOAA Atlas NESDIS 62.

  49. Montagna, P. A., Palmer, T. A., & Pollack, J. B. (2013).Hydrological changes and estuarine dynamics (Vol. 8). Springer. 

  50. Knight, R. L. (1992). Ancillary benefits and potential problems with the use of wetlands for nonpoint source pollution control.Ecological Engineering,1, 97–113. 

    Article  Google Scholar 

  51. Anati, D. A. (1999). The salinity of hypersaline brines: Concepts and misconceptions.International Journal of Salt Lake Research,8,55–70. 

    Article  Google Scholar 

  52. Wei, J., She, Q., & Liu, X. (2021). Insights into the influence of membrane permeability and structure on osmotically-driven membrane processes.Membranes,11, 1–22. 

    Article  Google Scholar 

  53. Nguyen, T. P. N., Jun, B. M., Lee, J. H., & Kwon, Y. N. (2015). Comparison of integrally asymmetric and thin film composite structures for a desirable fashion of forward osmosis membranes.Journal of Membrane Science,495, 457–470. 

    Article  Google Scholar 

  54. Arena, J. T., Manickam, S. S., Reimund, K. K., Brodskiy, P., & McCutcheon, J. R. (2015). Characterization and performance relationships for a commercial thin film composite membrane in forward osmosis desalination and pressure retarded osmosis.Industrial and Engineering Chemistry Research,54, 11393–11403. 

    Article  Google Scholar 

  55. Shibuya, M., Yasukawa, M., Takahashi, T., Miyoshi, T., Higa, M., & Matsuyama, H. (2015). Effect of operating conditions on osmotic-driven membrane performances of cellulose triacetate forward osmosis hollow fiber membrane.Desalination,362, 34–42. 

    Article  Google Scholar 

  56. Blandin, G., Vervoort, H., D’Haese, A., Schoutteten, K., Bussche, J. V., Vanhaecke, L., Myat, D. T., Le-Clech, P., & Verliefde, A. R. D. (2016). Impact of hydraulic pressure on membrane deformation and trace organic contaminants rejection in pressure assisted osmosis (PAO).Process Safety and Environmental Protection,102, 316–327. 

    Article  Google Scholar 

  57. Sahebi, S., Phuntsho, S., Tijing, L., Han, G., Han, D. S., Abdel-Wahab, A., & Shon, H. K. (2017). Thin-film composite membrane on a compacted woven backing fabric for pressure assisted osmosis.Desalination,406, 98–108. 

    Article  Google Scholar 

  58. Xia, L., Andersen, M. F., Hélix-Nielsen, C., & McCutcheon, J. R. (2017). Novel commercial aquaporin flat-sheet membrane for forward osmosis.Industrial and Engineering Chemistry Research,56, 11919–11925. 

Download references

Acknowledgements

The authors would like to express their gratitude that this work was part of a joint research project conducted at the Department of Civil Engineering, Mymensingh Engineering College, University of Dhaka, and the Water Quality and Pond Dynamics Laboratory, Faculty of Fisheries, Bangladesh Agricultural University. The content of this article is solely the responsibility of the authors.

Author information

Authors and Affiliations

  1. Department of Civil Engineering, Mymensingh Engineering College, University of Dhaka, Mymensingh, 2208, Bangladesh

    Yasin Edmam Iman, Nadim Ahmed, Sayed Abul Monsur Anachh & Kazi Abu Manjur

  2. Department of Civil Engineering, Dhaka University of Engineering & Technology, Gazipur, 1707, Bangladesh

    Kazi Abu Manjur

Authors
  1. Yasin Edmam Iman

    You can also search for this author inPubMed Google Scholar

  2. Nadim Ahmed

    You can also search for this author inPubMed Google Scholar

  3. Sayed Abul Monsur Anachh

    You can also search for this author inPubMed Google Scholar

  4. Kazi Abu Manjur

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYasin Edmam Iman.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. No funding was received to assist with the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iman, Y.E., Ahmed, N., Anachh, S.A.M.et al. Experimental Investigation on Saline Water Purification Using Reverse Osmosis by a Novus Biomimetic Membrane.J Bionic Eng19, 816–836 (2022). https://doi.org/10.1007/s42235-022-00167-3

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp