Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Optimal Design of Adaptive Robust Control for Bounded Constraint-Following Error in Fuzzy Mechanical Systems

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This paper proposes an optimal indirect approach for asymmetric bounds in constraint-following in mechanical systems with (possibly fast) time-varying fuzzy uncertainty. The uncertainty is described with fuzzy set theory. We aim at optimal controller to drive the constraint-following error of the concerned fuzzy system to lie within a desired (possibly asymmetric) bound all the time and get to be sufficiently small eventually. For deterministic performance, we transform the fuzzy original system into a constructed fuzzy system, for which a deterministic (not the usual if-then rules-based) adaptive robust control is designed for uniform boundedness and uniform ultimate boundedness. For optimal performance, a performance index is proposed based on the fuzzy information, by minimizing which an optimal control gain design problem is formulated and solved. When the constructed fuzzy system is uniform boundedness and uniform ultimate boundedness, the constraint-following error of the original fuzzy system is proved to be bounded. As a result, the control design can render out deterministic performance and minimum performance index.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Papastavridis, J.G.: Analytic mechanics. Oxford University Press, New York (2002)

    Google Scholar 

  2. Chen, Y.H.: Approximate constraint-following of mechanical systems under uncertainty. Nonlinear Dyn. Syst. Theory8(4), 329–337 (2008)

    MathSciNet MATH  Google Scholar 

  3. Wang, X., Zhao, H., Sun, Q., Chen, Y.H.: Regulating constraint obedience for fuzzy mechanical systems based on\(\beta\)-measure and a general Lyapunov function. IEEE Trans. Fuzzy Syst.25(6), 1729–1740 (2016)

    Article  Google Scholar 

  4. Wang, X., Sun, Q., Chen, Y.H.: Adaptive robust control for triple evasion-tracing-arrival performance of uncertain mechanical systems. Proc. Instit. Mech. Eng. I J. Syst. Control. Eng.231(8), 652–668 (2017)

    Google Scholar 

  5. Sun, Q., Wang, X., Chen, Y.H.: Adaptive robust control for dual avoidance-arrival performance for uncertain mechanical systems. Nonlinear Dyn.94, 759–774 (2018)

    Article  Google Scholar 

  6. Sun, Q., Wang, X., Yang, G., Chen, Y.H.: Designing robust control for mechanical systems: constraint following and multivariable optimization. IEEE Trans. Ind. Inform. (2019).https://doi.org/10.1109/TII.2019.2951842

    Article  Google Scholar 

  7. Xu, J., Du, Y., Chen, Y.H., Guo, H.: Optimal robust control design for constrained uncertain systems: a fuzzy-set theoretic approach. IEEE Trans. Fuzzy Syst.26(4), 3494–3505 (2018)

    Article  Google Scholar 

  8. Sun, H., Chen, Y.H., Zhao, H.: Adaptive robust control methodology for active roll control system with uncertainty. Nonlinear Dyn.92, 359–371 (2018)

    Article  Google Scholar 

  9. Leitmann, G., Skowronski, J.: Avoidance control. J. Optim. Theory Appl.23(4), 581–591 (1977)

    Article MathSciNet  Google Scholar 

  10. Prucz, Z., Soong, T.T., Reinhorn, A.: An analysis of pulse control for simple mechanical systems. J. Dyn. Syst. Meas. Control107(2), 123–131 (1985)

    Article  Google Scholar 

  11. Soong, T.T.: Active structural control: theory and practice. Longman Scientific and Technical, Essex (1990)

    Google Scholar 

  12. Chuang, C.H., Wu, D.N., Wang, Q.: LQR for state-bounded structural control. J. Dyn. Syst. Meas. Control118(1), 113–119 (1996)

    Article  Google Scholar 

  13. Li, P., Alvarez, L., Horowitz, R.: AHS safe control laws for platoon leaders. IEEE Trans. Control Syst. Technol.5(6), 614–628 (1997)

    Article  Google Scholar 

  14. Udwadia, F.E., Wanichanon, T.: Control of uncertain nonlinear multibody mechanical systems. Earth Space81(4), 041020-1–041020-11 (2014)

    Google Scholar 

  15. Udwadia, F.E., Prasanth, B.K.: Dynamics and control of a multi-body planar pendulum. Nonlinear Dyn.81(1–2), 845–866 (2015)

    Article MathSciNet  Google Scholar 

  16. Yin, H., Chen, Y.H., Yu, D.: Stackelberg-theoretic approach for performance improvement in fuzzy systems. IEEE Trans. Cybern. (2019).https://doi.org/10.1109/TCYB.2018.2883729

    Article  Google Scholar 

  17. Hwang, C.L., Yang, C.C., Hung, J.Y.: Path tracking of an autonomous ground vehicle with different payloads by hierarchical improved fuzzy dynamic sliding-mode control. IEEE Trans. Fuzzy Syst.26(2), 899–914 (2018)

    Article  Google Scholar 

  18. Hwang, C.L., Chen, Y.H.: Fuzzy fixed-time learning control with saturated input, nonlinear switching surface and switching gain to achieve null tracking error. IEEE Trans. Fuzzy Syst. (2019).https://doi.org/10.1109/TFUZZ.2019.2917121

    Article  Google Scholar 

  19. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst.28(1), 15–33 (1988)

    Article MathSciNet  Google Scholar 

  20. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern.15(1), 116–132 (1985)

    Article  Google Scholar 

  21. Procyk, T.J., Mamdani, E.H.: A linguistic self-organizing process controller. Automatica15(1), 15–30 (1979)

    Article  Google Scholar 

  22. Pars, L.A.: A treatise on analytical dynamics. Wiley, New Jersey (1965)

    MATH  Google Scholar 

  23. Rosenberg, R.M.: Analytical dynamics of discrete systems. Plenum, New York (1977)

    Book  Google Scholar 

  24. Kusko, B.: Fuzzy thinking: the new science of fuzzy logic. Hyperion, New York (1993)

    Google Scholar 

  25. Chen, Y.H.: A new approach to the control design of fuzzy dynamical systems. J. Dyn. Syst. Meas. Control133(6), 061019 (2011)

    Article  Google Scholar 

  26. Martin, J.C., George, L.: Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems. IEEE Trans. Autom. Control26(5), 1139 (1981)

    Article MathSciNet  Google Scholar 

  27. Khalil, H.K.: Nonlinear systems. Prentice-Hall, New Jersey (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The research is supported by the “Natural Science Foundation of China” (No. 51805263), the “Provincial Natural Science Foundation of Jiangsu” (No. BK20180474), the “Fundamental Research Funds for the Central Universities” (No. 309181B8811), and the “Graduate Student Scientific Research Innovation Projects of Jiangsu Province” (No.\(\hbox {SJKY19}\_0289\)). The research of Ye-Hwa Chen was supported by the Fundamental Research Funds for the Central Universities (No. 300102258305).

Author information

Authors and Affiliations

  1. The School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, People’s Republic of China

    Xiuye Wang, Qinqin Sun & Guolai Yang

  2. The Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, 710064, Shanxi, People’s Republic of China

    Ye-Hwa Chen

  3. The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA

    Ye-Hwa Chen

Authors
  1. Xiuye Wang

    You can also search for this author inPubMed Google Scholar

  2. Qinqin Sun

    You can also search for this author inPubMed Google Scholar

  3. Guolai Yang

    You can also search for this author inPubMed Google Scholar

  4. Ye-Hwa Chen

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toQinqin Sun.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Sun, Q., Yang, G.et al. Optimal Design of Adaptive Robust Control for Bounded Constraint-Following Error in Fuzzy Mechanical Systems.Int. J. Fuzzy Syst.22, 970–984 (2020). https://doi.org/10.1007/s40815-019-00792-x

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp