Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

T-PickSeer: visual analysis of taxi pick-up point selection behavior

  • Regular Paper
  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Taxi drivers often take much time to navigate the streets to look for passengers, which leads to high vacancy rates and wasted resources. Empty taxi cruising remains a big concern for taxi companies. Analyzing the pick-up point selection behavior can solve this problem effectively, providing suggestions for taxi management and dispatch. Many studies have been devoted to analyzing and recommending hotspot regions of pick-up points, which can make it easier for drivers to pick-up passengers. However, the selection of pick-up points is complex and affected by multiple factors, such as convenience and traffic management. Most existing approaches cannot produce satisfactory results in real-world applications because of the changing travel demands and the lack of interpretability. In this paper, we introduce a visual analytics system, T-PickSeer, for taxi company analysts to better explore and understand the pick-up point selection behavior of passengers. We explore massive taxi GPS data and employ an overview-to-detail approach to enable effective analysis of pick-up point selection. Our system provides coordinated views to compare different regularities and characteristics in different regions. Also, our system assists in identifying potential pick-up points and checking the performance of each pick-up point. Three case studies based on a real-world dataset and interviews with experts have demonstrated the effectiveness of our system.

Graphic abstract

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

References

  • Adamczyk J, Tiede D (2017) Zonalmetrics-a python toolbox for zonal landscape structure analysis. Comput Geosci 99:91–99

    Article  Google Scholar 

  • Al-Dohuki S, Wu Y, Kamw F, Yang J, Li X, Zhao Y, Ye X, Chen W, Ma C, Wang F (2016) Semantictraj: a new approach to interacting with massive taxi trajectories. IEEE Trans Visual Comput Gr 23(1):11–20.https://doi.org/10.1109/TVCG.2016.2598416

    Article  Google Scholar 

  • Al-Dohuki S, Zhao Y, Kamw F, Yang J, Ye X, Chen W (2021) Qutevis: visually studying transportation patterns using multisketch query of joint traffic situations. IEEE Comput Gr Appl 41(2):35–48.https://doi.org/10.1109/MCG.2019.2911230

    Article  Google Scholar 

  • Berdeddouch A, Yahyaouy A, Bennani Y, Verde R (2020) Recommender system for most relevant k pick-up points. In: Proceedings of the International Conference on Artificial Intelligence & Industrial Applications, pp. 277–289 .https://doi.org/10.1007/978-3-030-51186-9_20 . Springer

  • Bi S, Sheng Y, He W, Fan J, Xu R (2021) Analysis of travel hot spots of taxi passengers based on community detection. J Adv Transp.https://doi.org/10.1155/2021/6646768

    Article  Google Scholar 

  • Chen W, Huang Z, Wu F, Zhu M, Guan H, Maciejewski R (2018) Vaud: a visual analysis approach for exploring spatio-temporal urban data. IEEE Trans Visual Comput Gr 24(9):2636–2648.https://doi.org/10.1109/TVCG.2017.2758362

    Article  Google Scholar 

  • Chen Y, Fu Q, Zhu J (2020) Finding next high-quality passenger based on spatio-temporal big data. In: Proceedings of the international conference on cloud computing and big data analytics (ICCCBDA), pp. 447–452. IEEE

  • Deng Z, Weng D, Liang Y, Bao J, Zheng Y, Schreck T, Xu M, Wu Y (2021) Visual cascade analytics of large-scale spatiotemporal data. IEEE Trans Vis Comput Gr 28(6):2486–2499

    Google Scholar 

  • Deng Z, Weng D, Liu S, Tian Y, Xu M, Wu Y (2023) A survey of urban visual analytics: advances and future directions. Comput Vis Media 9(1):3–39

    Article  Google Scholar 

  • Edler D, Keil J, Bestgen A-K, Kuchinke L, Dickmann F (2019) Hexagonal map grids-an experimental study on the performance in memory of object locations. Cartogr Geogr Inf Sci 46(5):401–411

    Article  Google Scholar 

  • Feng Z, Li H, Zeng W, Yang S-H, Qu H (2020) Topology density map for urban data visualization and analysis. IEEE Trans Vis Comput Gr 27(2):828–838.https://doi.org/10.1109/TVCG.2020.3030469

    Article  Google Scholar 

  • Feng Z, Qu H, Yang S-H, Ding Y, Song J (2022) A survey of visual analytics in urban area. Expert Syst.https://doi.org/10.1111/exsy.13065

    Article  Google Scholar 

  • Ferreira N, Poco J, Vo HT, Freire J, Silva CT (2013) Visual exploration of big spatio-temporal urban data: a study of New York city taxi trips. IEEE Trans Vis Comput Gr 19(12):2149–2158.https://doi.org/10.1109/TVCG.2013.226

    Article  Google Scholar 

  • Gao Y, Xu P, Lu L, Liu H, Liu S, Qu H (2012) Visualization of taxi drivers’ income and mobility intelligence. In: Proceedings of the Advances in Visual Computing, pp. 275–284.https://doi.org/10.1007/978-3-642-33191-6_27 . Springer Berlin Heidelberg

  • Ge W, Shao D, Xue M, Zhu H, Cheng J (2017) Urban taxi ridership analysis in the emerging metropolis: case study in Shanghai. Transp Res Proc 25:4916–4927.https://doi.org/10.1016/j.trpro.2017.05.368

    Article  Google Scholar 

  • Gehlke CE, Biehl K (1934) Certain effects of grouping upon the size of the correlation coefficient in census tract material. J Am Stat Assoc 29(185A):169–170

    Article  Google Scholar 

  • Guo H, Wang Z, Yu B, Zhao H, Yuan X (2011) Tripvista: Triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection. In: Proceedings of the IEEE Pacific Visualization Symposium, pp. 163–170. IEEE

  • Huang Z, Shan G, Cheng J, Sun J (2019) Trec: an efficient recommendation system for hunting passengers with deep neural networks. Neural Comput Appl 31(1):209–222.https://doi.org/10.1007/s00521-018-3728-2

    Article  Google Scholar 

  • Huang Z, Zhao Y, Chen W, Gao S, Yu K, Xu W, Tang M, Zhu M, Xu M (2020) A natural-language-based visual query approach of uncertain human trajectories. IEEE Trans Visual Comput Gr 26(1):1256–1266.https://doi.org/10.1109/TVCG.2019.2934671

    Article  Google Scholar 

  • Jiang W, Zhang L (2018) The impact of the transportation network companies on the taxi industry: evidence from Beijing’s GPS taxi trajectory data. IEEE Access 6:12438–12450.https://doi.org/10.1109/ACCESS.2018.2810140

    Article  Google Scholar 

  • Liu D, Weng D, Li Y, Bao J, Zheng Y, Qu H, Wu Y (2016) Smartadp: visual analytics of large-scale taxi trajectories for selecting billboard locations. IEEE Trans Vis Comput Gr 23(1):1–10.https://doi.org/10.1109/TVCG.2016.2598432

    Article  Google Scholar 

  • Lu M, Liang J, Wang Z, Yuan X (2016) Exploring OD patterns of interested region based on taxi trajectories. J Vis 19(4):811–821.https://doi.org/10.1007/s12650-016-0357-7

    Article  Google Scholar 

  • Mu B, Dai M (2019) Recommend taxi pick-up hotspots based on density-based clustering. In: Proceedings of the International Conference on Computer and Communication Engineering Technology (CCET), pp. 176–181.https://doi.org/10.1109/CCET48361.2019.8989132. IEEE

  • Openshaw S (1984) The modifiable areal unit problem. Concepts and Techniques in Modern Geography

  • Rempel R, Carr A (2003) Patch analyst extension for arcview: version 3. Available on line at:http://flash.lakeheadu.ca/rrempel/patch/index.html

  • Shen Q, Zeng W, Ye Y, Arisona SM, Schubiger S, Burkhard R, Qu H (2018) Streetvizor: visual exploration of human-scale urban forms based on street views. IEEE Trans Visual Comput Gr 24(1):1004–1013.https://doi.org/10.1109/TVCG.2017.2744159

    Article  Google Scholar 

  • Silva C, Saraee M (2019) Predicting road traffic accident severity using decision trees and time-series calendar heatmaps. In: Proceedings of the IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), pp. 99–104.https://doi.org/10.1109/CSUDET47057.2019.9214709. IEEE

  • Suh A, Hajij M, Wang B, Scheidegger C, Rosen P (2019) Persistent homology guided force-directed graph layouts. IEEE Trans Visual Comput Gr 26(1):697–707.https://doi.org/10.1109/TVCG.2019.2934802

    Article  Google Scholar 

  • Tang L, Sun F, Kan Z, Ren C, Cheng L (2017) Uncovering distribution patterns of high performance taxis from big trace data. ISPRS Int J Geo Inf 6(5):134.https://doi.org/10.3390/ijgi6050134

    Article  Google Scholar 

  • Von Landesberger T, Brodkorb F, Roskosch P, Andrienko N, Andrienko G, Kerren A (2015) Mobilitygraphs: visual analysis of mass mobility dynamics via spatio-temporal graphs and clustering. IEEE Trans Vis Comput Gr 22(1):11–20

    Article  Google Scholar 

  • Wang Y, Haleem H, Shi C, Wu Y, Zhao X, Fu S, Qu H (2018) Towards easy comparison of local businesses using online reviews. Comput Gr Forum 37(3):63–74.https://doi.org/10.1111/cgf.13401

    Article  Google Scholar 

  • Wang T, Zhang Y, Li M, Liu L (2019) How do passengers with different using frequencies choose between traditional taxi service and online car-hailing service? A case study of Nanjing, China. Sustainability 11(23):6561.https://doi.org/10.3390/su11236561

    Article  Google Scholar 

  • Wang F, Chen W, Wu F, Zhao Y, Hong H, Gu T, Wang L, Liang R, Bao H (2014) A visual reasoning approach for data-driven transport assessment on urban roads. In: Proceedings of the IEEE conference on visual analytics science and technology (VAST), pp. 103–112 .https://doi.org/10.1109/VAST.2014.7042486. IEEE

  • Wang R, Chow C.-Y, Lyu Y, Lee V.C, Kwong S, Li Y, Zeng J (2015) Taxirec: recommending road clusters to taxi drivers using ranking-based extreme learning machines. In: Proceedings of the SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–4

  • Wang X, Liu Y, Liao Z, Zhao Y (2021) Deepfm-based taxi pick-up area recommendation. In: Proceedings of the International Conference on Pattern Recognition, pp. 407–421 .https://doi.org/10.1007/978-3-030-68821-9_36. Springer

  • Weng D, Zheng C, Deng Z, Ma M, Bao J, Zheng Y, Xu M, Wu Y (2020) Towards better bus networks: a visual analytics approach. IEEE Trans Vis Comput Gr 27(2):817–827.https://doi.org/10.1109/TVCG.2020.3030458

    Article  Google Scholar 

  • Wood J, Dykes J, Slingsby A (2010) Visualisation of origins, destinations and flows with OD maps. Cartogr J 47(2):117–129

    Article  Google Scholar 

  • Xiong Z, Li J, Wu H (2021) Understanding operation patterns of urban online ride-hailing services: a case study of Xiamen. Transp Policy 101:100–118

    Article  Google Scholar 

  • Xu X, Zhou J, Liu Y, Xu Z, Zhao X (2015) Taxi-rs: taxi-hunting recommendation system based on taxi GPS data. IEEE Trans Intell Transp Syst 16(4):1716–1727.https://doi.org/10.1109/TITS.2014.2371815

    Article  Google Scholar 

  • Yang Y, Wang X, Xu Y, Huang Q (2020) Multiagent reinforcement learning-based taxi predispatching model to balance taxi supply and demand. J Adv Transp.https://doi.org/10.1155/2020/8674512

    Article  Google Scholar 

  • Yuan C, Geng X, Mao X (2020) Taxi high-income region recommendation and spatial correlation analysis. IEEE Access 8:139529–139545.https://doi.org/10.1109/TKDE.2017.2772907

    Article  Google Scholar 

  • Zeng W, Fu C-W, Arisona SM, Schubiger S, Burkhard R, Ma K-L (2017) Visualizing the relationship between human mobility and points of interest. IEEE Trans Intell Transp Syst 18(8):2271–2284

    Article  Google Scholar 

  • Zeng W, Lin C, Lin J, Jiang J, Xia J, Turkay C, Chen W (2020) Revisiting the modifiable areal unit problem in deep traffic prediction with visual analytics. IEEE Trans Vis Comput Gr 27(2):839–848

    Article  Google Scholar 

  • Zhang M, Liu J, Liu Y, Hu Z, Yi L (2012) Recommending pick-up points for taxi-drivers based on spatio-temporal clustering. In: Proceedings of the International Conference on Cloud and Green Computing, pp. 67–72.https://doi.org/10.1109/CGC.2012.34 . IEEE

  • Zhao Y, Ge L, Xie H, Bai G, Zhang Z, Wei Q, Lin Y, Liu Y, Zhou F (2022) Astf: visual abstractions of time-varying patterns in radio signals. IEEE Trans Visual Comput Gr 29(1):214–224

    Google Scholar 

  • Zhou H, Xu P, Yuan X, Qu H (2013) Edge bundling in information visualization. Tsinghua Sci Technol 18(2):145–156.https://doi.org/10.1109/TST.2013.6509098

    Article  Google Scholar 

  • Zhou Z, Yu J, Guo Z, Liu Y (2018) Visual exploration of urban functions via spatio-temporal taxi OD data. J Vis Lang Comput 48:169–177.https://doi.org/10.1109/TVCG.2013.226

    Article  Google Scholar 

  • Zhu W, Lu J, Li Y, Yang Y (2019) A pick-up points recommendation system for ridesourcing service. Sustainability 11(4):1097.https://doi.org/10.3390/su11041097

    Article  Google Scholar 

  • Zong F, Wu T, Jia H (2019) Taxi driver’s cruising patterns-insights from taxi GPS traces. IEEE Trans Intell Transp Syst 20(2):571–582.https://doi.org/10.1109/TITS.2018.2816938

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our domain experts and the anonymous reviewers for their insightful comments. This work is supported by grants from the National Natural Science Foundation of China (No. 62302531) and the Science and Technology Planning Project of Guangdong Province (No. 2023B1212060029).

Author information

Authors and Affiliations

  1. School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen, 518107, China

    Shuxian Gu & Haipeng Zeng

  2. Huawei Technologies Co., Ltd, Shenzhen, 518129, China

    Yemo Dai

  3. Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, China

    Zezheng Feng

  4. School of Computing and Information Systems, Singapore Management University, 81 Victoria Street, Singapore, 188065, Singapore

    Yong Wang

Authors
  1. Shuxian Gu

    You can also search for this author inPubMed Google Scholar

  2. Yemo Dai

    You can also search for this author inPubMed Google Scholar

  3. Zezheng Feng

    You can also search for this author inPubMed Google Scholar

  4. Yong Wang

    You can also search for this author inPubMed Google Scholar

  5. Haipeng Zeng

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHaipeng Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, S., Dai, Y., Feng, Z.et al. T-PickSeer: visual analysis of taxi pick-up point selection behavior.J Vis27, 451–468 (2024). https://doi.org/10.1007/s12650-024-00968-0

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp