Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Semi-blind two-way AF relaying over Nakagami-m fading environment

  • Published:
annals of telecommunications - annales des télécommunications Aims and scope Submit manuscript

Abstract

In this paper, we investigate semi-blind opportunistic amplify-and-forward (AF) selection relaying in two-way dual-hop cooperative communication networks on independent Nakagami-m fading channels. This system is compared to channel state information (CSI)-assisted opportunistic AF selection relaying (CSIA-OAF) where the relays use variable gains for the amplification. In semi-blind opportunistic AF scenario (SB-OAF), the relays use partial CSI-fixed gains to amplify the received signals. In this work, we first derive the expression of the signal-to-noise ratio (SNR) in the case of SB-OAF selection relaying. The obtained SNR is used to process the bounds of average sum-rate, outage probability, and average symbol error rate (SER). Numerical results are used to show the performance of the proposed SB-OAF system compared to the CSIA-OAF relaying. The comparison shows that the cost of the significant reduction of the proposed SB-OAF complexity is obtained for a slight loss in performance compared to CSIA-OAF scenario.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sendonaris A, Erkip E, Aazhang B (2003) User cooperation diversityPart I: system description. IEEE Trans Commun 51:1927–1938. doi:10.1109/TCOMM.2003.818096

    Article  Google Scholar 

  2. Laneman JN, Tse DNC, Wornell GW (2004) Cooperative diversity in wireless networks: efficient protocals and outage behavior. IEEE Trans Inf Theory 50(12):3062–080. doi:10.1109/TIT.2004.838089

    Article MATH MathSciNet  Google Scholar 

  3. Kramer G, Gastpar M, Gupta P (2005) Cooperative strategies and capacity theorems for relay networks. IEEE Trans Inf Theory 51(9):3037–3063

    Article MATH MathSciNet  Google Scholar 

  4. Hu H, Yanikomeroglu H, Falconer DD, Periyalwar S (2004) Range extension without capacity penalty in cellular networks with digital fixed relays. In: Proceedings of IEEE global telecommunications conference (GLOBECOM2004). Dallas, pp 3053–3057

  5. AlouaneWH, Hamdi N, Meherzi S (2012) Accurate BEP of adaptive demodulate-and-forward relaying over Rayleigh fading channels. In: 17th IEEE symposium on computers and communication (ISCC)

  6. Lagrange X (2011) Performance analysis of HARQ protocols with link adaptation on fading channels. Ann Telecommun 66(11–12):695–705

    Article  Google Scholar 

  7. AlouaneWH, Hamdi N,Meherzi S (2012) Analytical BEP expressions of incremental and selective ADmF protocols in cooperative wireless networks. In: 20th IEEE telecommunications forum (TELFOR), pp 202–205

  8. Alouane WH, Hamdi N, Meherzi S (2012) Closed-form BEP Of demodulate-and-forward using two-relay over Rayleigh fading environments. In: 3rd international conference on the network of the future (NoF 2012)

  9. Talha B, Ptzold M (2010) Mobile-to-mobile fading channels in amplify-and-forward relay systems under line-of-sight conditions: statistical modeling and analysis. Ann Telecommun 65(7–8):391–410

    Article  Google Scholar 

  10. Amara S, Boujema H, Hamdi N (2009) SEP of cooperative systems using amplify and forward or decode and forward relaying. In: 17th European signal processing conference. Glasgow

  11. Rahima S, Hamdi N (2012) Generalized beamforming (GBF) for MIMO amplify-and-forward relaying. In: 8th international wireless communications and mobile computing conference (IWCMC-2012), pp 185–188

  12. Wu Z, Yang H-B (2011) Power allocation of cooperative amplify and-forward communications with multiple relays. In IEEE International Conference on Communications (ICC)

  13. Emamian V, Anghel P, Kaveh M (2002) Outage probability of a multiuser spatial diversity system in a wireless networks. In: Proceedings IEEE vehicular technology conference. Vancouver, pp 573–576

  14. Hasna MO, Alouini M-S (2002) Application of the harmonic mean statistics to the end-to-end performance oftransmission systems with relays. In: Proceedings IEEE global communications conference. Taipei, Taiwan, pp 1310–1314

  15. Xia M, Wu Y-C, Aissa S (2012) Exact outage probability of dual hop CSI-assisted AF relaying over Nakagami-m fading channels. In: IEEE transactions on signal processing, pp 5578–5583

  16. Laneman J, Wornell G (2003) Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans Inf Theory 49(10):2415–2425

    Article MATH MathSciNet  Google Scholar 

  17. HasnaMO, Alouini M-S (2003) End-to-end performance of transmission systems with relays over rayleigh-fading channels. IEEE Trans Wirel Commun 2(6):1126–1131

    Article  Google Scholar 

  18. Pham TT, Nguyen HH, Tuan HD (2010) Power allocation in orthogonal wireless relay networks with partial channel state information. IEEE Trans Signal Process 58(2):869–878

    Article MathSciNet  Google Scholar 

  19. Altunbas I, Ylmaz A, Kucur SS, Kucur O (2012) Performance analysis of dual-hop fixed-gain AF relaying systems with OSTBC over Nakagami-m fading channels. Int J Electron Commun (AE) 2012(66):841–846

    Article  Google Scholar 

  20. Ikki SS, Ahmed MH (2008) Performance of multiple-relay cooperative diversity systems with best relay selection over Rayleigh fading channels. EURASIP J Adv Signal Process 2008. Article ID 580368

  21. Zhang J, Zhang T, Huang J, Yuan R (2009) ABEP of amplify and-forward cooperation in Nakagami-m fading channels with arbitrary m. IEEE Trans Wirel Commun 8(9):4445–4449

    Article  Google Scholar 

  22. Xu W, Zhang J, Zhang P (2011) Performance of transmit diversity assisted amplify-and-forward relay system with partial relay selection in mixed Rayleigh and Rician fading channels. J China Univ Posts Telecommun 18(5):37–41

    Article  Google Scholar 

  23. Suraweera HA, Michalopoulos DS, Karagiannidis GK (2009) Semi-blind amplify-and-forward with partial relay selection. Electron Lett 6:45

    Google Scholar 

  24. Hasna MO, Alouini M-S (2004) A performance study of dual-hop transmissions with fixed gain relays. IEEE Trans Wirel Commun 3(6):1963–1968

    Article  Google Scholar 

  25. Prakash S, McLoughlin I (2011) Performance of dual-hop multiantenna systems with fixed gain amplify-and-forward relay selection. IEEE Trans Wirel Commun 10(6):1709–1741

    Article  Google Scholar 

  26. Hussain SI, Hasna MO, Alouini M-S (2010) Performance analysis of best relay selection scheme for fixed gain cooperative networks in non-identical Nakagami-m channels. In: Proceedings of IEEE international symposium on wireless communication systems, ISWCS. York, pp 255–259

  27. Hussain SI, Hasna MO, Alouini M-S (2012) Performance analysis of selective cooperation with fixed gain relays in Nakagami-m channels. Phys Commun 5:272–279

    Article  Google Scholar 

  28. Larsson P, Johansson N, Sunell KE (2006) Coded bi-directional relaying. In: Proceedings of IEEE vehicle technology conference (VTC06-Spring) Australia, pp 851–855

  29. Rankov B, Wittneben A (2007) Spectral efficiency protocols for halfduplex fading relay channels. IEEE J Select Areas Commun 25(2):379–389

    Article  Google Scholar 

  30. Rankov B, Wittneben A (2005) Spectral efficient signaling for half-duplex relay channels. In: Proceedings asilomar conference on signals, systems, and computers. Pacific Grove

  31. Hwang K-S, Ko Y-C, AlouiniM-S (2009) Performance bounds for two-way amplify-and-forward relaying based on relay path selection. In: 69th IEEE vehicular technology conference. VTC Spring

  32. Hadj Alouane W, Hamdi N, Meherzi S (2013) Semi-blind amplify and-forward in two-way Relaying networks. Annals of Telecommunications. Springer. doi:10.1007/s12243-013-0390-7

  33. Zhang Y-L, Chang Y-Y, Dai LY, Yang D-C (2011) Performance of two-way amplify-and-forward relaying with adaptive modulation over Nakagami-m fading channels. J China Univ Posts Telecommun 18(5):47–52

    Article  Google Scholar 

  34. Hussain SI, Hasna MO, Alouini M-S (2012) Performance analysis of selective cooperation with fixed gain relays in Nakagami-m channels. Phys Commun 5(3):272–279

    Article  Google Scholar 

  35. Anghel PA, Kaveh M (2004) Exact symbol error probability of a coopeartive network in a Rayleigh-fading environment. IEEE Trans Wirel Commun 3(5):1416–1421

    Article  Google Scholar 

  36. Gradshteyn and Ryzhik (1994), Table of integrals, series and products, fifth edn. Academic, New York

  37. Abramowitz M, Stegun IA (1972) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th edn. Dover, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. SYSCOM LAB, ENIT, El Manar University, Tunis, Tunisia

    Wided Hadj Alouane & Noureddine Hamdi

Authors
  1. Wided Hadj Alouane

    You can also search for this author inPubMed Google Scholar

  2. Noureddine Hamdi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toWided Hadj Alouane.

Appendices

Appendix A

\(\frac {dF_{x}}{dx}\) is the convolution of\(f_{P\gamma _{N_{1}R_{i}}}\) and\(f_{P\gamma _{R_{i}N_{2}}}\) which can be expressed as follows:

$$ \frac{dF_{x}}{dx}=\int_{0}^{x}f_{P\gamma_{N_{1}R_{i}}}(\beta)f_{P\gamma_{R_{i}N_{2}}}(x-\beta) d\beta $$
(37)

By substituting Eqs. 11 and12 into Eq. 37, we get

$$\begin{array}{@{}rcl@{}} \frac{dF_{x}}{dx} &=& \left(\frac{m_{1i}}{P\overline{\gamma}_{N_{1}R_{i}}}\right)^{m_{1i}}\left(\frac{m_{2i}}{P\overline{\gamma}_{R_{i}N_{2}}}\right)^{m_{2i}}\\ &&{\kern12pt}\times\frac{1}{{\Gamma}(m_{1i}) {\Gamma}\left(m_{2i}\right)} \exp\left(\frac{-m_{2i}x}{P\overline{\gamma}_{R_{i}N_{2}}}\right) \\ &&\sum\limits_{k=0}^{m_{2i}-1} \left(\begin{array}{c}{m_{2i}-1}\\ {k}\end{array}\right) x^{m_{2i}-1-k} (-1)^{k}\int_{0}^{x}(\beta)^{\left(m_{1i}-1+k\right)} \\ &&\exp\left(-\beta\left(\frac{m_{1i}}{P\overline{\gamma}_{N_{1}R_{i}}}-\frac{m_{2i}}{P\overline{\gamma}_{R_{i}N_{2}}}\right) \right) d\beta \end{array} $$
(38)

The above integral can be expressed as follows:

$$\begin{array}{@{}rcl@{}} &&\int_{0}^{x}(\beta)^{\left(m_{1i}-1+k \right)} \exp\left(-\beta\left(\frac{m_{1i}}{P\overline{\gamma}_{N_{1}R_{i}}}- \frac{m_{2i}}{P\overline{\gamma}_{R_{i}N_{2}}}\right) \right) d\beta \\ &&=\left(\frac{m_{1i}\overline{\gamma}_{R_{i}N_{2}}-m_{2i}\overline{\gamma}_{N_{1}R_{i}}}{P\overline{\gamma}_{N_{1}R_{i}}\overline{\gamma}_{R_{i}N_{2}}}\right)^{-k-m_{1i}} \\ &&\left({\Gamma}\left(k+m_{1i}\right)-{\Gamma}\left(k+m_{1i},x\left(\frac{m_{1i}\overline{\gamma}_{R_{i}N_{2}}-m_{2i}\overline{\gamma}_{N_{1}R_{i}}}{P\overline{\gamma}_{N_{1}R_{i}}\overline{\gamma}_{R_{i}N_{2}}}\right)\right)\right) \end{array} $$
(39)

By substituting Eq. 39 into Eq. 38, we have

$$\begin{array}{@{}rcl@{}} \frac{dF_{x}}{dx}&=& \left(\frac{m_{1i}}{P\overline{\gamma}_{N_{1}R_{i}}}\right)^{m_{1i}}\left(\frac{m_{2i}}{P\overline{\gamma}_{R_{i}N_{2}}}\right)^{m_{2i}} \\&&{\kern12pt} \times\frac{1}{{\Gamma}\left(m_{1i}\right){\Gamma}\left(m_{2i}\right)}\exp\left(\frac{-m_{2i}x}{P\overline{\gamma}_{R_{i}N_{2}}} \right)\\&&\sum\limits_{k=0}^{m_{2i}-1}\left(\begin{array}{c}{m_{2i}-1}\\ {k}\end{array}\right)(-1)^{k} x^{m_{2i}-1-k}\\ &&{\kern1pc} \times\left(\frac{m_{1i}\overline{\gamma}_{R_{i}N_{2}}-m_{2i}\overline{\gamma}_{N_{1}R_{i}}}{P\overline{\gamma}_{N_{1}R_{i}}\overline{\gamma}_{R_{i}N_{2}}}\right)^{-k-m_{1i}} \\&&\left({\Gamma}{\vphantom{\left.\left(k+m_{1i},x\left(\frac{m_{1i}\overline{\gamma}_{R_{i}N_{2}}-m_{2i}\overline{\gamma}_{N_{1}R_{i}}}{P\overline{\gamma}_{N_{1}R_{i}}\overline{\gamma}_{R_{i}N_{2}}}\right)\right)\right)}}\left(k+m_{1i}\right)-{\Gamma} \left(k+m_{1i},x\left(\frac{m_{1i}\overline{\gamma}_{R_{i}N_{2}}-m_{2i}\overline{\gamma}_{N_{1}R_{i}}}{P\overline{\gamma}_{N_{1}R_{i}}\overline{\gamma}_{R_{i}N_{2}}}\right)\right)\right) \end{array} $$
(40)

Applying the finite-sum representation of the incomplete Gamma function given by Γ(α,x) = (α−1)!\(\exp (-x) \sum _{l=0}^{\alpha -1} \frac {1}{l!}x^{l},\) Eq. 40 can be rewritten as Eq. 13.

Appendix B

The upper bound for the average sum-rate of SB-OAF system over Nakagami-m fading channels is written as [32]

$$\begin{array}{@{}rcl@{}} &&{}E\left\{R_{SB-OAF}^{UB}\right\}=\frac{1}{2ln(2)}\\ &&{\kern4.5pc} \times\int_{0}^{\infty} ln\left(\frac{\sqrt{P}\;P_{R_{i}}(C-1)\sqrt{C-1}(x)^{\frac{3}{2}}}{4C}\right)f_{\gamma}(x) dx \end{array} $$
(41)

Wherefγ(x) is the PDF ofγ given asγ =max (γ1,...,γL). Equation 41 can be rewritten after simple manipulations as follows:

$$\begin{array}{@{}rcl@{}} E\left\{R_{SB-OAF}^{UB} \right\} &=&\frac{1}{2ln(2)}\int_{0}^{\infty} ln\left( \frac{\sqrt{P}\;P_{R_{i}}(C-1) \sqrt{C-1}\;t}{4C}\right)\frac{2f_{\gamma}\left(t^{\frac{2}{3}}\right)}{3t^{\frac{1}{3}}} dt \\ &=&\frac{L}{2ln(2)}\int_{0}^{\infty}\left(ln\left(\frac{\sqrt{P}\;P_{R_{i}}(C-1)\sqrt{C-1}}{4C}\right)+ln(t)\right)\\ &&\left({\Gamma}\left(m,\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}} \right)\right)^{L-1}\left(\frac{m}{\overline{\gamma}_{b}}\right)^{m} t^{\frac{2m}{3}-1} \frac{2\exp\left(\frac{-mt^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)}{3 {\Gamma}(m)} dt \end{array} $$
(42)

When the Nakagami fading parameter m is an integer value, Γ(m) = (m−1)! and using the definition of Γ(.,.) given in the second line after Eq. 21, we can simply show that

$$\begin{array}{@{}rcl@{}} {\Gamma}\left(m,\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)&=&\frac{1}{(m-1)!}\int_{0}^{\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}} t^{m-1}\exp(-t) dt \\ &=&1-\exp\left(\frac{-m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)\sum\limits_{l=0}^{m}\frac{1}{l!}\left(\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)^{l} \end{array} $$
(43)

Using Eq. 22, the expansion\(\left ({\Gamma }\left (m,\frac {m t^{\frac {2}{3}}}{\overline {\gamma }_{b}}\right )\right )^{L-1}\) in Eq. 42 can be written in terms of finite series expansions as follows:

$$\begin{array}{@{}rcl@{}} \left({\Gamma}\left(m,\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)\right)^{L-1}&=&\left(1-\exp\left(\frac{-m t^{\frac{2}{3}}}{\overline{\gamma}_{b}} \right) \sum\limits_{l=0}^{m}\frac{1}{l!} \left( \frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)^{l} \right)^{L-1} \\ &=&\sum\limits_{i=0}^{L-1} \left(\begin{array}{c}{L-1}\\ {i}\end{array}\right)(-1)^{i} \exp\left(\frac{-im t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right) \\&&{\kern9pt}\times\left(\sum\limits_{l=0}^{m}\frac{1}{l!}\left(\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)^{l}\right)^{i}\\ &=&\sum\limits_{i=0}^{L-1} \sum\limits_{z=0}^{i(m-1)} \left(\begin{array}{c}{L-1}\\ {i}\end{array}\right) (-1)^{i} a_{i,z}\\&&{\kern8pt} \times \exp\left(\frac{-im t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)\left(\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)^{z} \end{array} $$
(44)

Where the expression in the second line of Eq. 44 is simplified using the expansion

$$ \sum\limits_{l=0}^{m}\frac{1}{l!} \left(\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)^{l}=\sum\limits_{z=0}^{i(m-1)} a_{i,z} \left(\frac{m t^{\frac{2}{3}}}{\overline{\gamma}_{b}}\right)^{z} $$
(45)

Where the coefficientsai,z are defined in Eq. 18. Substituting the expression Eq. 44 into Eq. 42, and after some manipulations, we obtain

$$\begin{array}{@{}rcl@{}} E\left\{R_{SB-OAF}^{UB}\right\} &=&\frac{L}{3ln(2)} \sum\limits_{i=0}^{L-1} \sum\limits_{z=0}^{i(m-1)} \left(\begin{array}{c}{L-1}\\ {i}\end{array}\right)(-1)^{i}a_{i,z} \left(\frac{m}{\overline{\gamma}_{b}}\right)^{m+z}\frac{1}{{\Gamma}(m)}\\&&\left(\int_{0}^{\infty}ln\left(\frac{\sqrt{P}\;P_{R_{i}}(C-1)\sqrt{C-1}}{4C}\right)t^{\frac{2}{3}(m+z)-1}\right.\\ &&{\kern4pt}\times\exp\left(\frac{-mt^{\frac{2}{3}}(1+i)}{\overline{\gamma}_{b}}\right)dt\\&& \left.+\int_{0}^{\infty}ln(t)t^{\frac{2}{3}(m+z)-1} \exp\left(\frac{-m t^{\frac{2}{3}}(1+i)}{\overline{\gamma}_{b}}\right)dt\right) \end{array} $$
(46)

The above integrals can be written as

$$\begin{array}{@{}rcl@{}} &&{} \int_{0}^{\infty} t^{\frac{2}{3}(m+z)-1} \exp\left(\frac{-m t^{\frac{2}{3}}(1+i)}{\overline{\gamma}_{b}}\right)dt\\ &&{\kern12pt}=\frac{3}{2}(1+i)^{-m-z}\left(\frac{m}{\overline{\gamma}_{b}}\right)^{-m-z} {\Gamma}( m+z) \end{array} $$
(47)

and

$$\begin{array}{@{}rcl@{}} &&{}\int_{0}^{\infty} ln(t) t^{\frac{2}{3}(m+z)-1} \exp\left(\frac{-m t^{\frac{2}{3}}(1+i) }{\overline{\gamma}_{b}}\right)dt \\ &&{}=\frac{9}{4}(1+i)^{-m-z}\left(\frac{m}{\overline{\gamma}_{b}}\right)^{-m-z}{\Gamma}(m+z)\\ &&{\kern18pt}\times\left(PG[0,m+z]-ln\left(\frac{m(1+i)}{\overline{\gamma}_{b}} \right)\right) \end{array} $$
(48)

Substituting Eqs. 47 and48 into Eq. 46, and after some manipulations, we obtain Eq. 17.

Appendix C

The upper bound for the average sum-rate of two-way system with CSI-assisted relays is written as in [31]

$$ E\left\{R_{CSIA-OAF}^{UB} \right\} =\frac{1}{2ln(2)}\int_{0}^{\infty} ln\left(\frac{P_{R_{i}}^{2}}{\lambda_{i}}x^{2}\right) f_{\gamma}(x) dx $$
(49)

Wherefγ(x) is the PDF ofγ given asγ =max (γ1,...,γL). Considering Nakagami-m fading channels, Eq. 49 can be rewritten after simple manipulations as follows:

$$\begin{array}{@{}rcl@{}} E\left\{R_{CSIA-OAF}^{UB}\right\} &=&\frac{1}{2ln(2)}\int_{0}^{\infty} ln\left(\frac{P_{R_{i}}^{2}}{\lambda_{i}}\; t \right)\frac{f_{\gamma}\left(\sqrt{t}\right)}{2\sqrt{t}} dt \\ &=&\frac{L}{4ln(2)}\int_{0}^{\infty}\left(ln\left(\frac{P_{R_{i}}^{2}}{\lambda_{i}}\right)+ln(t) \right)\\&&\times\left({\Gamma}\left(m,\frac{m\sqrt{t}}{\overline{\gamma}_{b}}\right)\right)^{L-1} \\&&{} \left(\frac{m}{\overline{\gamma}_{b}}\right)^{m}\times t^{\frac{m}{2}-1} \frac{\exp\left(\frac{-m \sqrt{t}}{\overline{\gamma}_{b}}\right)}{{\Gamma}(m)}dt \end{array} $$
(50)

The expansion\(\left ({\Gamma }\left (m,\frac {m\sqrt {t}}{\overline {\gamma }_{b}}\right )\right )^{L-1}\) can be written using Eq. 44 as follows:

$$\begin{array}{@{}rcl@{}} &&{}\left({\Gamma}\left(m,\frac{m \sqrt{t}}{\overline{\gamma}_{b}}\right)\right)^{L-1}=\sum\limits_{i=0}^{L-1}\sum\limits_{z=0}^{i(m-1)} \left(\begin{array}{c}{L-1}\\ {i}\end{array}\right)(-1)^{i}a_{i,z}\\ &&{\kern12pt} \times\exp\left(\frac{-im\sqrt{t}}{\overline{\gamma}_{b}}\right)\left(\frac{m\sqrt{t}}{\overline{\gamma}_{b}} \right)^{z} \end{array} $$
(51)

Substituting Eq. 51 into Eq. 50, and after some manipulations, we obtain

$$\begin{array}{@{}rcl@{}} E\left\{R_{SB-OAF}^{UB}\right\}&=&\frac{L}{4ln(2)} \sum\limits_{i=0}^{L-1} \sum\limits_{z=0}^{i(m-1)}\left(\begin{array}{c}{L-1}\\ {i}\end{array}\right)(-1)^{i} a_{i,z} \\ &&{\kern12pt} \times \left(\frac{m}{\overline{\gamma}_{b}}\right)^{m+z}\frac{1}{{\Gamma}(m)}\\&& \left(\int_{0}^{\infty}ln\left(\frac{P_{R_{i}}^{2}}{\lambda_{i}}\right) t^{\frac{1}{2}(m+z)-1} \exp\left(\frac{-m\sqrt{t}(1+i)}{\overline{\gamma}_{b}}\right)dt\right.\\&& \left.+\int_{0}^{\infty}ln(t)t^{\frac{1}{2}(m+z)-1}\exp\left(\frac{-m \sqrt{t}(1+i)}{\overline{\gamma}_{b}}\right)dt\right) \end{array} $$
(52)

The above integrals can be written as

$$\begin{array}{@{}rcl@{}} &&\int_{0}^{\infty} t^{\frac{1}{2}(m+z)-1}\exp\left(\frac{-m\sqrt{t}(1+i)}{\overline{\gamma}_{b}}\right)dt \\&&{\kern5pc} \times=2(1+i)^{-m-z}\left(\frac{m}{\overline{\gamma}_{b}}\right)^{-m-z}{\Gamma}(m+z) \end{array} $$
(53)

and

$$\begin{array}{@{}rcl@{}} &&{}\int_{0}^{\infty} ln(t)t^{\frac{1}{2}(m+z)-1}\exp\left(\frac{-m \sqrt{t}(1+i)}{\overline{\gamma}_{b}}\right)dt \\ &&{\kern5pc} =4 (1+i)^{-m-z} \left(\frac{m}{\overline{\gamma}_{b}}\right)^{-m-z} {\Gamma}(m+z) \\&&{\kern6pc}\left(PG[0,m+z]-ln\left(\frac{m(1+i)}{\overline{\gamma}_{b}}\right)\right) \end{array} $$
(54)

Substituting Eqs. 53 and54 into Eq. 52, and after some manipulations, we obtain Eq. 19.

Rights and permissions

About this article

Cite this article

Hadj Alouane, W., Hamdi, N. Semi-blind two-way AF relaying over Nakagami-m fading environment.Ann. Telecommun.70, 49–62 (2015). https://doi.org/10.1007/s12243-014-0427-6

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp