Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

NSFD scheme and dynamic consistency of a delayed diffusive humoral immunity viral infection model

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this paper, we establish a delayed diffusive humoral immunity viral infection model with nonlinear incidence rate and capsids subject to the homogeneous Neumann boundary conditions. By constructing appropriate Lyapunov function, we show that the global threshold dynamics for the original continuous model. Meanwhile, nonstandard finite difference (NSFD) scheme for the original continuous model is also proposed by utilizing Micken’s method. Then, using the theory of M-matrix, it is shown that the discrete model is well-posedness. Additionally, the global stability for the steady states is investigated by constructing discrete Lyapunov function. These results imply that the NSFD scheme may preserve the dynamical properties of solutions for the original continuous model efficiently. Furthermore, some numerical simulations to illustrate the theoretical analysis are carried out.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ciupe, S.M., Ribeiro, R.M., Nelson, P.W., Perelson, A.S.: Modeling the mechanisms of acute hepatitis B virus infection. J. Theor. Biol.247(1), 23–35 (2007)

    MathSciNet  Google Scholar 

  2. WHO, Hepatitis B: Fact sheet: No. 204. 2015. Available from:http://www.who.int/mediacentre/factsheets/fs204/en/

  3. Lewin, S., Walters, T., Locarnini, S.: Hepatitis B treatment: rational combination chemotherapy based on viral kinetic and animal model studies. Antivir. Res.55(3), 381–396 (2002)

    Google Scholar 

  4. Ribeiro, R.M., Lo, A., Perelson, A.S.: Dynamics of hepatitis B virus infection. Microbes Infect.4(8), 829–835 (2002)

    Google Scholar 

  5. Wang, K., Wang, W., Song, S.: Dynamics of a HBV model with diffusion and delay. J. Theoret. Biol.253, 36–44 (2008)

    MathSciNet MATH  Google Scholar 

  6. Xu, R., Ma, Z.: An HBV model with diffusion and time delay. J. Theor. Biol.257(3), 499–509 (2009)

    MathSciNet MATH  Google Scholar 

  7. Gan, Q., Xu, R., Yang, P., Wu, Z.: Travelling waves of a hepatitis B virus infection model with spatial diffusion and time delay. IMA J. Appl. Math.75(3), 392–417 (2010)

    MathSciNet MATH  Google Scholar 

  8. Li, J., Wang, K., Yang, Y.: Dynamical behaviors of an HBV infection model with logistic hepatocyte growth. Math. Comput. Model54(1–2), 704–711 (2011)

    MathSciNet MATH  Google Scholar 

  9. Zhang, Y., Xu, Z.: Dynamics of a diffusive HBV model with delayed Beddington-DeAngelis response. Nonlinear Anal. RWA15, 118–139 (2014)

    MathSciNet MATH  Google Scholar 

  10. Duan, X., Yuan, S., Wang, K.: Dynamics of a diffusive age-structured HBV model with saturating incidence. Math. Biosci. Eng.13(5), 935–968 (2016)

    MathSciNet MATH  Google Scholar 

  11. Manna, K., Chakrabarty, S.P.: Global stability and a non-standard finite difference scheme for a diffusion driven HBV model with capsids. J. Differ. Equ. Appl.21(10), 918–933 (2015)

    MathSciNet MATH  Google Scholar 

  12. Manna, K.: Dynamics of a diffusion-driven HBV infection model with capsids and time delay. Int. J. Biomath.10(5), 1750062 (2017)

    MathSciNet MATH  Google Scholar 

  13. Geng, Y., Xu, J., Hou, J.: Discretization and dynamic consistency of a delayed and diffusive viral infection model. Appl. Math. Comput.316, 282–295 (2018)

    MathSciNet MATH  Google Scholar 

  14. Guo, T., Liu, H., Xu, C., Yan, F.: Global stability of a diffusive and delayed HBV infection model with HBV DNA-containing capsids and general incidence rate. Discrete. Contin. Dyn. Syst.23(10), 4223–4242 (2018)

    MathSciNet MATH  Google Scholar 

  15. Tang, X., Li, J.: Chemotaxis induced Turing bifurcation in a partly diffusive bacterial and viral diseases propagation model. Appl. Math. Lett.100, 106037 (2020)

    MathSciNet MATH  Google Scholar 

  16. Wang, X., Tang, X., Wang, Z., Li, X.: Global dynamics of a diffusive viral infection model with general incidence function and distributed delays. Ricerche. Mat. (2020).https://doi.org/10.1007/s11587-020-00481-0

    Article  Google Scholar 

  17. Tang, X., Wang, Z., Yang, J.: Threshold dynamics and competitive exclusion in a virus infection model with general incidence function and density-dependent diffusion. Complexity (2020).https://doi.org/10.1155/2020/4923856

    Article MATH  Google Scholar 

  18. Nowak, M.A., Bangham, C.R.M.: Population dynamics of immune responses to persistent viruses. Science272, 74–79 (1996)

    Google Scholar 

  19. Li, M.Y., Shu, H.: Impact of intracellular delays and target-cell dynamics on in vivo viral infections. SIAM J. Appl. Math.70, 2434–2448 (2010)

    MathSciNet MATH  Google Scholar 

  20. Chen, X., Min, L., Sun, Q.: Dynamics analysis and numerical simulation of an amended HBV infection model. Inter. J. Biomath.28(2), 278–284 (2013)

    MathSciNet MATH  Google Scholar 

  21. Tian, X., Xu, R.: Global stability and Hopf bifurcation of an HIV-1 infection model with saturation incidence and delayed CTL immune response. Appl. Math. Comput.237, 146–154 (2014)

    MathSciNet MATH  Google Scholar 

  22. Elaiw, A.M., AlShamrani, N.H.: Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal. Nonlinear Anal. RWA26, 161–190 (2015)

    MathSciNet MATH  Google Scholar 

  23. Yang, Y., Xu, Y.: Global stability of a diffusive and delayed virus dynamics model with Beddington-DeAngelis incidence function and CTL immune response. Comput. Math. Appl.71, 922–930 (2016)

    MathSciNet  Google Scholar 

  24. Kang, C., Miao, H., Chen, X., Xu, J.: Global stability of a diffusive and delayed virus dynamics model with Crowley-Martin incidence function and CTL immune response. Adv. Differ. Equ.2017, 324 (2017)

    MathSciNet MATH  Google Scholar 

  25. Miao, H., Teng, Z., Abdurahman, X., Li, Z.: Global stability of a diffusive and delayed virus infection model with general incidence function and adaptive immune response. Comput. Appl. Math.37(3), 3780–3805 (2018)

    MathSciNet MATH  Google Scholar 

  26. McCluskey, C.C., Yang, Y.: Global stability of a diffusive virus dynamics model with general incidence function and time delay. Nonlinear Anal. RWA25, 64–78 (2015)

    MathSciNet MATH  Google Scholar 

  27. Xu, R.: Global stability of an HIV-1 infection model with saturation infection and intracellular delay. J. Math. Anal. Appl.375, 75–81 (2011)

    MathSciNet MATH  Google Scholar 

  28. Wang, X., Tao, Y., Song, X.: Global stability of a virus dynamics model with Beddington-DeAngelis incidence rate and CTL immune response. Nonlinear Dyn66, 825–830 (2011)

    MathSciNet MATH  Google Scholar 

  29. Zhou, X., Cui, J.: Global stability of the viral dynamics with Crowley-Martin function response. Bull. Korean Math. Soc.48(3), 555–574 (2011)

    MathSciNet MATH  Google Scholar 

  30. Villanueva, R., Arenas, A., Gonzalez Parra, G.: A nonstandard dynamically consistent numerical scheme applied to obesity dynamics. J. Appl. Math.2008, 640154 (2008).https://doi.org/10.1155/2008/640154

    Article MathSciNet MATH  Google Scholar 

  31. Chen-Charpentier, B.M., Kojouharov, H.V.: An unconditionally positivity preserving scheme for advection-diffusion reaction equations. Math. Comput. Model.57, 2177–2185 (2013)

    MathSciNet MATH  Google Scholar 

  32. Dimitrov, D.T., Kojouharov, H.V.: Positive and elementary stable nonstandard numerical methods with applications to predator-prey models. J. Comput. Appl. Math.189, 98–108 (2006)

    MathSciNet MATH  Google Scholar 

  33. Izzo, G., Vecchio, A.: A discrete time version for models of population dynamics in the presence of an infection. J. Comput. Appl. Math.210, 210–221 (2007)

    MathSciNet MATH  Google Scholar 

  34. Enatsu, Y., Nakata, Y., Muroya, Y., et al.: Global dynamics of difference equations for SIR epidemic models with a class of nonlinear incidence rates. J. Differ. Equ. Appl.18, 1163–1181 (2012)

    MathSciNet MATH  Google Scholar 

  35. Hattaf, K., Yousfi, N.: A numerical method for a delayed viral infection model with general incidence rate. J. King Saud Univ. Sci.28, 368–374 (2016)

    MATH  Google Scholar 

  36. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific, Singapore (1994)

    MATH  Google Scholar 

  37. Mickens, R.E.: Discretizations of nonlinear differential equations using explicit nonstandard methods. J. Comput. Appl. Math.110, 181–185 (1999)

    MathSciNet MATH  Google Scholar 

  38. Qin, W., Wang, L., Ding, X.: A non-standard finite difference method for a hepatitis b virus infection model with spatial diffusion. J. Differ. Equ. Appl.20, 1641–1651 (2014)

    MathSciNet MATH  Google Scholar 

  39. Hattaf, K., Yousfi, N.: A numerical method for delayed partial differential equations describing infectious diseases. Comput. Math. Appl.72, 2741–2750 (2016)

    MathSciNet MATH  Google Scholar 

  40. Allen, L.J.S., van den Driessche, P.: The basic reproduction number in some discrete-time epidemic models. J. Differ. Equ. Appl.14, 1127–1147 (2008)

    MathSciNet MATH  Google Scholar 

  41. Dang, Q.A., Hoang, M.T.: Lyapunov direct method for investigating stability of nonstandard finite difference schemes for metapopulation models. J. Differ. Equ. Appl.24, 15–47 (2018)

    MathSciNet MATH  Google Scholar 

  42. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    MATH  Google Scholar 

  43. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Prentice Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  44. Henry, D.: Gerometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, New York (1993)

    Google Scholar 

  45. Redlinger, R.: Existence theorems for semilinear parabolic systems with functionals. Nonlinear Anal. TMA8, 667–682 (1984)

    MathSciNet MATH  Google Scholar 

  46. Manna, K.: Global properties of a HBV infection model with HBV DNA-containing capsids and immune response. Int. J. Appl. Comput. Math.3(3), 2323–2338 (2017)

    MathSciNet MATH  Google Scholar 

  47. Duan, J.S., Rach, R., Wazwaz, A.-M.: A reliable algorithm for positive solutions of nonlinear boundary value problems by the multistage Adomian decomposition method. Open Eng.5(1), 59–74 (2015)

    Google Scholar 

  48. Goličnik, M.: Solution of the extended Michaelis-Menten equation for enzyme kinetics with spontaneous substrate depletion using the Adomian decomposition method. MATCH Commun. Math. Comput. Chem75, 613–626 (2016)

    MathSciNet  Google Scholar 

  49. Fatoorehchi, H., Alidadi, M., Rach, R., Shojaeian, A.: Theoretical and experimental investigation of thermal dynamics of Steinhart-Hart negative temperature coefficient thermistors. J. Heat Transfer.141(7), 072003 (2019)

    Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their valuable comments and suggestions on improving the presentation of this paper. The work is supported by the National Natural Science Foundation of China (No. 11761038) and Science and Technology Project of Department of Education of Jiangxi Province (No. GJJ180583).

Author information

Authors and Affiliations

  1. School of Mathematics and Physics, Jinggangshan University, Ji’an, 343009, China

    Xiaosong Tang, Tao Yu, Zhiyun Deng & Dengyu Liu

Authors
  1. Xiaosong Tang

    You can also search for this author inPubMed Google Scholar

  2. Tao Yu

    You can also search for this author inPubMed Google Scholar

  3. Zhiyun Deng

    You can also search for this author inPubMed Google Scholar

  4. Dengyu Liu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXiaosong Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Yu, T., Deng, Z.et al. NSFD scheme and dynamic consistency of a delayed diffusive humoral immunity viral infection model.J. Appl. Math. Comput.64, 429–455 (2020). https://doi.org/10.1007/s12190-020-01362-3

Download citation

Keywords

Mathematics Subject Classification

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp