Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Management of Dyslipidemia in Chronic Kidney Disease

  • Review
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Chronic kidney disease (CKD) ranks among the top five causes of global mortality, affecting 1 in 7 US adults (approximately 35.5 million people) in the United States. Cardiovascular disease (CVD) remains the leading cause of death in CKD patients. Atherogenic dyslipidemia, characterized by low HDL-C, high triglyceride-rich lipoproteins, and small-dense LDL particles, is common in CKD. Statins remain the foundation of lipid-lowering therapy in patients with CKD. Several other non-statin options currently exist to achieve non-HDL cholesterol targets, and most major societal guidelines emphasize the uses of these agents in their recommendations. These non-statin options include ezetimibe, bempedoic acid, PCSK9 inhibitors, fenofibrate, and omega-3 fatty acids. Several other classes of agents are in development. This review will summarize the salient considerations in managing lipid disorders in CKD patients.

Recent Findings

Despite mounting evidence suggesting that CKD is an independent risk factor for cardiovascular morbidity and mortality, the rates of utilization of lipid-lowering therapy in CKD patients remain sub-optimal. Concerns about the safety and efficacy of statins as a therapeutic option in CKD is a significant barrier for optimal lipid management in this population. Most guidelines recommend treating dyslipidemia with lipid-lowering therapy to target an LDL-C level less than 100 mg/dL for most CKD patients in the absence of other ASCVD (Atherosclerotic cardiovascular disease) risk enhancers. In the presence of other risk factors like diabetes, hypertension, and ASCVD, targeting an LDL-C level of 70 mg/dL or even lower, depending on the risk factor profile, is recommended.

Summary

ASCVD due to CKD is a significant cause of mortality and morbidity. Management of dyslipidemias in the CKD population is crucial to achieve good CV outcomes. Multiple therapeutic options are available to optimize the lipoprotein profile in CKD patients. The benefit of initiating lipid-lowering therapy in ESRD (end-stage renal disease) patients in the absence of clinical ASCVD is, however, debatable, and more studies are needed on this population.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Abbreviations

Apo:

Apolipoprotein

ASCVD:

Atherosclerotic cardiovascular disease

CABG:

Coronary artery bypass grafting

CAD:

Coronary artery disease

CETP:

Cholesteryl ester transfer protein

CKD:

Chronic kidney disease

CVD:

Cardiovascular disease

DHA:

Docosahexaenoic acid

ESRD:

End-stage renal disease

EPA:

Eicosapentaenoic acid

FAs:

Fatty acids

GBD:

Global Burden of Disease

HR:

Hazard ratio

HDL:

High-density lipoprotein

LCAT:

Lecithin–cholesterol acyltransferase

LDL-C:

Low-density lipoprotein cholesterol

Lp (a):

Lipoprotein (a)

MACE:

Major adverse cardiovascular events

PCI:

Percutaneous coronary intervention

PCSK9:

Proprotein convertase subtilisin/kexin type 9

RCT:

Randomized controlled trial

TG:

Triglyceride

USRDS:

US Renal Data System

References

  1. Levey AS, Eckardt K-U, Tsukamoto Y, Levin A, Coresh J, Rossert J, et al. Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 2005;67:2089–100.

    Article PubMed  Google Scholar 

  2. GBD 2019 Risk Factors Collaborators. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the global burden of disease study 2019. Lancet. 2020;396:1223–49.

    Article  Google Scholar 

  3. Centers for Disease Control and Prevention. Chronic kidney disease in the united States. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prvention; 2023.

    Google Scholar 

  4. Feng X, Hou N, Chen Z, Liu J, Li X, Sun X, et al. Secular trends of epidemiologic patterns of chronic kidney disease over three decades: an updated analysis of the global burden of disease study 2019. BMJ Open. 2023;13:e064540.

    Article PubMed PubMed Central  Google Scholar 

  5. Pilmore H, Dent H, Chang S, McDonald SP, Chadban SJ. Reduction in cardiovascular death after kidney transplantation. Transplantation. 2010;89:851.

    Article PubMed  Google Scholar 

  6. Ndumele CE, Rangaswami J, Chow SL, Neeland IJ, Tuttle KR, Khan SS, et al. Cardiovascular-Kidney-Metabolic health: A presidential advisory from the American heart association. Circulation. 2023;148:1606–35.

    Article PubMed  Google Scholar 

  7. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392:2052–90.

    Article PubMed PubMed Central  Google Scholar 

  8. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American heart association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Circulation. 2003;108:2154–69.

    Article PubMed  Google Scholar 

  9. Matsushita K, Ballew SH, Wang AY-M, Kalyesubula R, Schaeffner E, Agarwal R. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol. 2022;18:696–707.

    Article PubMed  Google Scholar 

  10. Vaziri ND. Dyslipidemia of chronic renal failure: the nature, mechanisms, and potential consequences. Am J Physiol Ren Physiol. 2006;290:F262–272.

    Article CAS  Google Scholar 

  11. Go AS, Chertow GM, Fan D, McCulloch CE, Hsu C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.

    Article CAS PubMed  Google Scholar 

  12. United States Renal Data System. 2024 USRDS Annual Data report: Epidemiology of kidney disease in the United States. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2024.

  13. Chronic Kidney Disease Prognosis Consortium, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.

    Article  Google Scholar 

  14. Jankowski J, Floege J, Fliser D, Böhm M, Marx N. Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation. 2021;143:1157–72.

    Article CAS PubMed PubMed Central  Google Scholar 

  15. Lamprea-Montealegre JA, McClelland RL, Astor BC, Matsushita K, Shlipak M, de Boer IH, et al. Chronic kidney disease, plasma lipoproteins, and coronary artery calcium incidence: the Multi-Ethnic study of atherosclerosis. Arterioscler Thromb Vasc Biol. 2013;33:652–8.

    Article CAS PubMed  Google Scholar 

  16. Katzmann JL, Werner CM, Stojakovic T, März W, Scharnagl H, Laufs U. Apolipoprotein CIII predicts cardiovascular events in patients with coronary artery disease: a prospective observational study. Lipids Health Dis. 2020;19:116.

    Article CAS PubMed PubMed Central  Google Scholar 

  17. Ferro CJ, Mark PB, Kanbay M, Sarafidis P, Heine GH, Rossignol P, et al. Lipid management in patients with chronic kidney disease. Nat Rev Nephrol. 2018;14:727–49.

    Article CAS PubMed  Google Scholar 

  18. Reiss AB, Voloshyna I, De Leon J, Miyawaki N, Mattana J. Cholesterol metabolism in CKD. Am J Kidney Dis. 2015;66:1071–82.

    Article CAS PubMed PubMed Central  Google Scholar 

  19. Shroff R, Speer T, Colin S, Charakida M, Zewinger S, Staels B, et al. HDL in children with CKD promotes endothelial dysfunction and an abnormal vascular phenotype. J Am Soc Nephrol. 2014;25:2658–68.

    Article CAS PubMed PubMed Central  Google Scholar 

  20. Kronenberg F. Causes and consequences of lipoprotein(a) abnormalities in kidney disease. Clin Exp Nephrol. 2014;18:234–7.

    Article CAS PubMed  Google Scholar 

  21. Shaik A, Kosiborod M, de Lemos JA, Gao Q, Mues KE, Alam S, et al. Use of lipid-lowering therapies in patients with chronic kidney disease and atherosclerotic cardiovascular disease: 2-year results from getting to an improved Understanding of Low-Density lipoprotein cholesterol and dyslipidemia management (GOULD). Clin Cardiol. 2022;45:1303–10.

    Article PubMed PubMed Central  Google Scholar 

  22. Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: executive summary: A report of the American college of cardiology/american heart association task force on clinical practice guidelines. Circulation. 2019;140:e563–95.

    PubMed PubMed Central  Google Scholar 

  23. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: A report of the American college of cardiology/american heart association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;73:3168–209.

    Article PubMed  Google Scholar 

  24. Zac-Varghese S, Mark P, Bain S, Banerjee D, Chowdhury TA, Dasgupta I, et al. Clinical practice guideline for the management of lipids in adults with diabetic kidney disease: abbreviated summary of the joint association of British clinical diabetologists and UK kidney association (ABCD-UKKA) guideline 2024. BMC Nephrol. 2024;25:216.

    Article PubMed PubMed Central  Google Scholar 

  25. Writing Committee, Lloyd-Jones DM, Morris PB, Ballantyne CM, Birtcher KK, Covington AM, et al. 2022 ACC expert consensus decision pathway on the role of nonstatin therapies for LDL-Cholesterol Lowering in the management of atherosclerotic cardiovascular disease risk: A report of the American college of cardiology solution set oversight committee. J Am Coll Cardiol. 2022;80:1366–418.

    Article PubMed  Google Scholar 

  26. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41:111–88.

    Article PubMed  Google Scholar 

  27. Jacobson TA, Ito MK, Maki KC, Orringer CE, Bays HE, Jones PH, et al. National lipid association recommendations for patient-centered management of dyslipidemia: part 1–full report. J Clin Lipidol. 2015;9:129–69.

    Article PubMed  Google Scholar 

  28. Wanner C, Tonelli M, Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. KDIGO clinical practice guideline for lipid management in CKD: summary of recommendation statements and clinical approach to the patient. Kidney Int. 2014;85:1303–9.

    Article CAS PubMed  Google Scholar 

  29. Kidney Disease. Improving global outcomes (KDIGO) CKD work group. KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2024;105:S117–314.

    Article  Google Scholar 

  30. Naci H, Brugts JJ, Fleurence R, Tsoi B, Toor H, Ades AE. Comparative benefits of Statins in the primary and secondary prevention of major coronary events and all-cause mortality: a network meta-analysis of placebo-controlled and active-comparator trials. Eur J Prev Cardiol. 2013;20:641–57.

    Article PubMed  Google Scholar 

  31. Tonelli M, Isles C, Curhan GC, Tonkin A, Pfeffer MA, Shepherd J, et al. Effect of Pravastatin on cardiovascular events in people with chronic kidney disease. Circulation. 2004;110:1557–63.

    Article CAS PubMed  Google Scholar 

  32. Shepherd J, Kastelein JJP, Bittner V, Deedwania P, Breazna A, Dobson S, et al. Intensive lipid Lowering with Atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to new Targets) study. J Am Coll Cardiol. 2008;51:1448–54.

    Article CAS PubMed  Google Scholar 

  33. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of Lowering LDL cholesterol with Simvastatin plus Ezetimibe in patients with chronic kidney disease (Study of heart and renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377:2181–92.

    Article CAS PubMed PubMed Central  Google Scholar 

  34. Tunnicliffe DJ, Palmer SC, Cashmore BA, Saglimbene VM, Krishnasamy R, Lambert K, et al. HMG coa reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst Rev. 2023;11:CD007784.

    PubMed  Google Scholar 

  35. Wanner C, Krane V, März W, Olschewski M, Mann JFE, Ruf G, et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing Hemodialysis. N Engl J Med. 2005;353:238–48.

    Article CAS PubMed  Google Scholar 

  36. Krane V, Schmidt K-R, Gutjahr-Lengsfeld LJ, Mann JFE, März W, Swoboda F, et al. Long-term effects following 4 years of randomized treatment with Atorvastatin in patients with type 2 diabetes mellitus on Hemodialysis. Kidney Int. 2016;89:1380–7.

    Article CAS PubMed  Google Scholar 

  37. März W, Genser B, Drechsler C, Krane V, Grammer TB, Ritz E, et al. Atorvastatin and low-density lipoprotein cholesterol in type 2 diabetes mellitus patients on Hemodialysis. Clin J Am Soc Nephrol. 2011;6:1316–25.

    Article PubMed PubMed Central  Google Scholar 

  38. Fellström BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, et al. Rosuvastatin and cardiovascular events in patients undergoing Hemodialysis. N Engl J Med. 2009;360:1395–407.

    Article PubMed  Google Scholar 

  39. Soohoo M, Moradi H, Obi Y, Rhee CM, Gosmanova EO, Molnar MZ, et al. Statin therapy before transition to End-Stage renal disease with posttransition outcomes. J Am Heart Assoc. 2019;8:e011869.

    Article PubMed PubMed Central  Google Scholar 

  40. Holdaas H, Fellström B, Jardine AG, Holme I, Nyberg G, Fauchald P, et al. Effect of Fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003;361:2024–31.

    Article CAS PubMed  Google Scholar 

  41. Holdaas H, Fellström B, Cole E, Nyberg G, Olsson AG, Pedersen TR, et al. Long-term cardiac outcomes in renal transplant recipients receiving Fluvastatin: the ALERT extension study. Am J Transplant. 2005;5:2929–36.

    Article CAS PubMed  Google Scholar 

  42. Cholesterol Treatment Trialists’ (CTT) Collaboration. Electronic address: Ctt@ndph.ox.ac.uk, cholesterol treatment trialists’ (CTT) collaboration. Effects of Statin therapy on diagnoses of new-onset diabetes and worsening glycaemia in large-scale randomised blinded Statin trials: an individual participant data meta-analysis. Lancet Diabetes Endocrinol. 2024;12:306–19.

    Article  Google Scholar 

  43. Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of Statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021;12:237–51.

    Article PubMed PubMed Central  Google Scholar 

  44. Rosenstein K, Tannock LR et al. Dyslipidemia in Chronic Kidney Disease. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000 [cited 2025 Jan 30]. Available from:http://www.ncbi.nlm.nih.gov/books/NBK305899/

  45. Wiggins BS, Saseen JJ, Page RL, Reed BN, Sneed K, Kostis JB, et al. Recommendations for management of clinically significant Drug-Drug interactions with Statins and select agents used in patients with cardiovascular disease: A scientific statement from the American heart association. Circulation. 2016;134:e468–95.

    Article PubMed  Google Scholar 

  46. Phan BAP, Dayspring TD, Toth PP. Ezetimibe therapy: mechanism of action and clinical update. Vasc Health Risk Manag. 2012;8:415–27.

    CAS PubMed PubMed Central  Google Scholar 

  47. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to Statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article CAS PubMed  Google Scholar 

  48. Lin Y-C, Lai T-S, Wu H-Y, Chou Y-H, Chiang W-C, Lin S-L, et al. Effects and safety of Statin and Ezetimibe combination therapy in patients with chronic kidney disease: A systematic review and Meta-Analysis. Clin Pharmacol Ther. 2020;108:833–43.

    Article CAS PubMed  Google Scholar 

  49. Ray KK, Bays HE, Catapano AL, Lalwani ND, Bloedon LT, Sterling LR, et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med. 2019;380:1022–32.

    Article CAS PubMed  Google Scholar 

  50. Nissen SE, Lincoff AM, Brennan D, Ray KK, Mason D, Kastelein JJP, et al. Bempedoic acid and cardiovascular outcomes in Statin-Intolerant patients. N Engl J Med. 2023;388:1353–64.

    Article PubMed  Google Scholar 

  51. Amore BM, Sasiela WJ, Ries DK, Tresh P, Emery MG. Pharmacokinetics of bempedoic acid in patients with renal impairment. Clin Transl Sci. 2022;15:789–98.

    Article CAS PubMed  Google Scholar 

  52. Bays HE, Bloedon LT, Lin G, Powell HA, Louie MJ, Nicholls SJ, et al. Safety of bempedoic acid in patients at high cardiovascular risk and with Statin intolerance. J Clin Lipidol. 2024;18:e59–69.

    Article PubMed  Google Scholar 

  53. Robinson JG, Farnier M, Krempf M, Bergeron J, Luc G, Averna M, et al. Efficacy and safety of Alirocumab in reducing lipids and cardiovascular events. N Engl J Med. 2015;372:1489–99.

    Article CAS PubMed  Google Scholar 

  54. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article CAS PubMed  Google Scholar 

  55. Wright RS, Ray KK, Landmesser U, Koenig W, Raal FJ, Leiter LA et al. Effects of Inclisiran in Patients With Atherosclerotic Cardiovascular Disease. Mayo Clinic Proceedings. 2024;99:1222–35.

  56. Toth PP, Dwyer JP, Cannon CP, Colhoun HM, Rader DJ, Upadhyay A, et al. Efficacy and safety of lipid Lowering by Alirocumab in chronic kidney disease. Kidney Int. 2018;93:1397–408.

    Article CAS PubMed  Google Scholar 

  57. Charytan DM, Sabatine MS, Pedersen TR, Im K, Park J-G, Pineda AL, et al. Efficacy and safety of Evolocumab in chronic kidney disease in the FOURIER trial. J Am Coll Cardiol. 2019;73:2961–70.

    Article CAS PubMed  Google Scholar 

  58. East C, Bass K, Mehta A, Rahimighazikalayed G, Zurawski S, Bottiglieri T, Alirocumab, Levels L. Inflammatory biomarkers, metabolomics, and safety in patients receiving maintenance dialysis: the ALIrocumab in DIALysis study (A phase 3 trial to evaluate the efficacy and safety of biweekly Alirocumab in patients on a stable Dialysis Regimen). Kidney Med. 2022;4:100483.

    Article PubMed PubMed Central  Google Scholar 

  59. García-Agudo R, Rojas-Fernández MÁ, Canllavi-Fiel E, Proy-Vega B, Tejera-Muñoz A. Safe and successful treatment with Pcsk9 inhibitors in hypercholesterolemia and renal transplantation: A case report. Transpl Proc. 2023;55:1921–3.

    Article  Google Scholar 

  60. Tall AR, Rader DJ. Trials and tribulations of CETP inhibitors. Circ Res. 2018;122:106–12.

    Article CAS PubMed  Google Scholar 

  61. Schmidt AF, Hunt NB, Gordillo-Marañón M, Charoen P, Drenos F, Kivimaki M, et al. Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease. Nat Commun. 2021;12:5640.

    Article CAS PubMed PubMed Central  Google Scholar 

  62. REVEAL Collaborative Group, Bowman L, Chen F, Sammons E, Hopewell JC, Wallendszus K, et al. Randomized evaluation of the effects of anacetrapib through Lipid-modification (REVEAL)-A large-scale, randomized, placebo-controlled trial of the clinical effects of anacetrapib among people with established vascular disease: trial design, recruitment, and baseline characteristics. Am Heart J. 2017;187:182–90.

    Article PubMed Central  Google Scholar 

  63. Kastelein JJP, Hsieh A, Dicklin MR, Ditmarsch M, Davidson MH. Obicetrapib: reversing the tide of CETP inhibitor disappointments. Curr Atheroscler Rep. 2024;26:35–44.

    Article CAS PubMed  Google Scholar 

  64. Ginsberg HN, Goldberg IJ. Broadening the scope of dyslipidemia therapy by targeting APOC3 (Apolipoprotein C3) and ANGPTL3 (Angiopoietin-Like protein 3). Arterioscler Thromb Vasc Biol. 2023;43:388–98.

    Article CAS PubMed  Google Scholar 

  65. Bergmark BA, Marston NA, Prohaska TA, Alexander VJ, Zimerman A, Moura FA, et al. Olezarsen for hypertriglyceridemia in patients at high cardiovascular risk. N Engl J Med. 2024;390:1770–80.

    Article CAS PubMed  Google Scholar 

  66. Backes J, Anzalone D, Hilleman D, Catini J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016;15:118.

    Article PubMed PubMed Central  Google Scholar 

  67. Wang T, Zhang X, Zhou N, Shen Y, Li B, Chen BE, et al. Association between Omega-3 fatty acid intake and dyslipidemia: A continuous Dose-Response Meta-Analysis of randomized controlled trials. J Am Heart Assoc. 2023;12:e029512.

    Article CAS PubMed PubMed Central  Google Scholar 

  68. Fazelian S, Moradi F, Agah S, Hoseini A, Heydari H, Morvaridzadeh M, et al. Effect of omega-3 fatty acids supplementation on cardio-metabolic and oxidative stress parameters in patients with chronic kidney disease: a systematic review and meta-analysis. BMC Nephrol. 2021;22:160.

    Article CAS PubMed PubMed Central  Google Scholar 

  69. Majithia A, Bhatt DL, Friedman AN, Miller M, Steg PG, Brinton EA, et al. Benefits of icosapent Ethyl across the range of kidney function in patients with established cardiovascular disease or diabetes: REDUCE-IT RENAL. Circulation. 2021;144:1750–9.

    Article CAS PubMed PubMed Central  Google Scholar 

  70. Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, et al. Effect of high-Dose Omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA. 2020;324:2268–80.

    Article CAS PubMed PubMed Central  Google Scholar 

  71. Khan SU, Lone AN, Khan MS, Virani SS, Blumenthal RS, Nasir K, et al. Effect of omega-3 fatty acids on cardiovascular outcomes: A systematic review and meta-analysis. EClinicalMedicine. 2021;38:100997.

    Article PubMed PubMed Central  Google Scholar 

  72. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent Ethyl for hypertriglyceridemia. N Engl J Med. 2019;380:11–22.

    Article CAS PubMed  Google Scholar 

  73. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–93.

    Article CAS PubMed  Google Scholar 

  74. Goto H, Iseri K, Hida N. Fibrates and the risk of cardiovascular outcomes in chronic kidney disease patients. Nephrol Dial Transpl. 2024;39:1016–22.

    Article  Google Scholar 

  75. Das Pradhan A, Glynn RJ, Fruchart J-C, MacFadyen JG, Zaharris ES, Everett BM, et al. Triglyceride Lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med. 2022;387:1923–34.

    Article PubMed  Google Scholar 

  76. Yen C-L, Fan P-C, Lin M-S, Lee C-C, Tu K-H, Chen C-Y, et al. Fenofibrate delays the need for Dialysis and reduces cardiovascular risk among patients with advanced CKD. J Clin Endocrinol Metab. 2021;106:1594–605.

    Article PubMed  Google Scholar 

  77. Hou R, Goldberg AC. Lowering low-density lipoprotein cholesterol: Statins, Ezetimibe, bile acid sequestrants, and combinations: comparative efficacy and safety. Endocrinol Metab Clin North Am. 2009;38:79–97.

    Article CAS PubMed  Google Scholar 

  78. Davidson MH, Dillon MA, Gordon B, Jones P, Samuels J, Weiss S, et al. Colesevelam hydrochloride (cholestagel): a new, potent bile acid sequestrant associated with a low incidence of Gastrointestinal side effects. Arch Intern Med. 1999;159:1893–900.

    Article CAS PubMed  Google Scholar 

  79. Jacobson TA, Armani A, McKenney JM, Guyton JR. Safety considerations with gastrointestinally active lipid-lowering drugs. Am J Cardiol. 2007;99:C47–55.

    Article  Google Scholar 

  80. Kamanna VS, Kashyap ML. Mechanism of action of niacin. Am J Cardiol. 2008;101:B20–6.

    Article  Google Scholar 

  81. HPS2-THRIVE Collaborative Group, Landray MJ, Haynes R, Hopewell JC, Parish S, Aung T, et al. Effects of extended-release niacin with Laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  Google Scholar 

  82. Maccubbin D, Tipping D, Kuznetsova O, Hanlon WA, Bostom AG. Hypophosphatemic effect of niacin in patients without renal failure: a randomized trial. Clin J Am Soc Nephrol. 2010;5:582–9.

    Article CAS PubMed PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Division of Cardiology, Department of Medicine, University of Louisville, Louisville, KY, USA

    Deepak Vedamurthy, Usman Sagheer, Akruti Patel & Gurnoor Singh

  2. Division of Cardiovascular Medicine Vice Chair, Department of Medicine Professor of Medicine & Radiology & Endowed Chair in Cardiovascular Innovations Director of Advanced Cardiac Imaging, Lipid Clinic & Infiltrative Heart Disease Program, Rudd Heart & Lung Center, University of Louisville School of Medicine, 201 Abraham Flexner Way, Suite 600, Louisville, KY, 40202, USA

    Dinesh Kalra

Authors
  1. Deepak Vedamurthy

    You can also search for this author inPubMed Google Scholar

  2. Usman Sagheer

    You can also search for this author inPubMed Google Scholar

  3. Akruti Patel

    You can also search for this author inPubMed Google Scholar

  4. Gurnoor Singh

    You can also search for this author inPubMed Google Scholar

  5. Dinesh Kalra

    You can also search for this author inPubMed Google Scholar

Contributions

Authors D.V. and U.S. wrote the main manuscript. G.S. prepared the figures and edited the manuscript. D.K. conceived the project and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence toDinesh Kalra.

Ethics declarations

Financial Disclosures

None.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp