Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Minimal linear codes constructed from partial spreads

  • Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Partial spreads are important in finite geometry and can be used to construct linear codes. From the results in (Des. Codes Cryptogr.90, 1–15, 2022) by Xia Li, Qin Yue and Deng Tang, we know that if the number of the elements in a partial spread is “big enough”, then the corresponding linear code is minimal. This paper used the sufficient condition in (IEEE Trans. Inf. Theory44(5), 2010–2017, 1998) to prove the minimality of such linear codes. In the present paper, we use the geometric approach to study the minimality of linear codes constructed from partial spreads in all cases.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anbar, N., Meidl, W.: Bent partitions. Des. Codes Cryptogr.90, 1081–1101 (2022)

    Article MathSciNet  Google Scholar 

  2. Ashikhmin, A., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inf. Theory44(5), 2010–2017 (1998)

    Article MathSciNet  Google Scholar 

  3. Ashikhmin, A., Barg, A., Cohen, G., Huguet L.: Variations on minimal codewords in linear codes. In: Cohen, G., Giusti, M., Mora, T. (eds.) Applied algebra, algebraic algorithms and error-correcting codes, (AAECC-11), (Lecture notes in computer science, vol. 948), pp. 96–105. Springer-Verlag, Berlin (1995)

  4. Alfarano, G.N., Borello, M., Neri, A.: A geometric characterization of minimal codes and their asymptotic performance. Adv. Math. Commun.16(1), 115–133 (2022)

    Article MathSciNet  Google Scholar 

  5. Alfarano, G.N., Borello, M., Neri, A., Ravagnani, A.: Three combinatorial perspectives on minimal codes. Siam J. Discrete Math.36(1), 461–489 (2022)

    Article MathSciNet  Google Scholar 

  6. Bartoli, D., Bonini, M.: Minimal linear codes in odd characteristic. IEEE Trans. Inf. Theory65(7), 4152–4155 (2019)

    Article MathSciNet  Google Scholar 

  7. Bartoli, D., Bonini, M., Gunes, B.: An inductive construction of minimal codes. Cryptogr. Commun.13(3), 439–449 (2021)

    Article MathSciNet  Google Scholar 

  8. Bartoli, D., Cossidente, A., Marino, G., Pavese, F.: On cutting blocking sets and their codes. Forum Math.34(2), 347–368 (2022)

    Article MathSciNet  Google Scholar 

  9. Berlekamp, E.R., McEliece, R.J., van Tilborg, H.C.A.: On the inherent intractability of certain coding problems. IEEE Trans. Inf. Theory24(3), 384–386 (1978)

    Article MathSciNet  Google Scholar 

  10. Bonini, M., Borello, M.: Minimal linear codes arising from blocking sets. J. Algebraic Comb.53(2), 327–341 (2021)

    Article MathSciNet  Google Scholar 

  11. Bruck, J., Naor, M.: The hardness of decoding linear codes with preprocessing. IEEE Trans. Inf. Theory36(2), 381–385 (1990)

    Article MathSciNet  Google Scholar 

  12. Carlet, C., Ding, C., Yuan, J.: Linear codes from highly nonlinear functions and their secret sharing schemes. IEEE Trans. Inf. Theory51(6), 2089–2102 (2005)

    Article  Google Scholar 

  13. Chabanne, H., Cohen, G., Patey, A.: Towards secure two-party computation from the wire-tap channel. In: Lee, H.-S., Han, D.-G. (eds.) Proceedings of ICISC 2013(Lecture notes in computer science, vol. 8565), pp. 34-46. Springer-Verlag, Berlin (2014)

  14. Cohen, G.D., Mesnager, S., Patey, A.: On minimal and quasi-minimal linear codes. In: Stam, M. (ed.) Proceedings of IMACC (Lecture notes in computer science, vol. 8308), pp. 85–98. Springer-Verlag, Berlin (2003)

  15. Ding, C., Fan, C., Zhou, Z.: The dimension and minimum distance of two classes of primitive BCH codes. Finite Fields Appl.45, 237–263 (2017)

    Article MathSciNet  Google Scholar 

  16. Ding, C., Heng, Z., Zhou, Z.: Minimal binary linear codes. IEEE Trans. Inf. Theory64(10), 6536–6545 (2018)

    Article MathSciNet  Google Scholar 

  17. Ding, C., Yuan, J.: Covering and secret sharing with linear codes. In Discrete mathematics and theoretical computer science (Lecture notes in computer science), vol. 2731, pp. 11–25. Springer-Verlag (2003)

  18. Heng, Z., Ding, C., Zhou, Z.: Minimal linear codes over finite fields. Finite Fields Appl.54, 176–196 (2018)

    Article MathSciNet  Google Scholar 

  19. Héger, T., Nagy, Z.L.: Short minimal codes and covering codes via strong blocking sets in projective spaces. IEEE Trans. Inf. Theory68(2), 881–890 (2022)

  20. Kantor, W.M.: On maximal symplectic partial spreads. Advances in Geometry17(4), 453–471 (2017)

  21. Lu, W., Wu, X.: The parameters of minimal linear codes. Finite Fields Appl.71, 176–196 (2021)

    Article MathSciNet  Google Scholar 

  22. Li, X., Yue, Q., Tang, D.: A family of linear codes from constant dimension subspace codes. Des. Codes Cryptogr.90, 1–15 (2022)

    Article MathSciNet  Google Scholar 

  23. Massey, J.L.: Minimal codewords and secret sharing. In: Proc. 6th joint Swedish-Russian workshop on information theory (M\(\ddot{o}\)lle, Sweden), pp. 246–249 (1993)

  24. Tang, C., Qiu, Y., Liao, Q., Zhou, Z.: Full characterization of minimal linear codes as cutting blocking sets. IEEE Trans. Inf. Theory67(6), 3690–3700 (2021)

    Article MathSciNet  Google Scholar 

  25. Tao, R., Feng, T., Li, W.: A construction of minimal linear codes from partial difference sets. IEEE Trans. Inf. Theory67(6), 3724–3734 (2021)

    Article MathSciNet  Google Scholar 

  26. Xu, G., Qu, L., Cao, X.: Minimal linear codes from Maiorana-McFarland functions. Finite Fields Appl.65, 101688 (2020)

    Article MathSciNet  Google Scholar 

  27. Xu, G.K., Qu, L.J.: Three classes of minimal linear codes over the finite fields of odd characteristic. IEEE Trans. Inf. Theory65(11), 7067–7078 (2017)

    Article MathSciNet  Google Scholar 

  28. Yuan, J., Ding, C.: Secret sharing schemes from three classes of linear codes. IEEE Trans. Inf. Theory52(1), 206–212 (2006)

    Article MathSciNet  Google Scholar 

  29. Zhou, Z., Ding, C.: Seven classes of three-weight cyclic codes. In IEEE Trans. Commun.61(10), 4120–4126 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Mathematics, Southeast University, Nanjing, 210096, China

    Xia Wu & Wei Lu

  2. School of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, China

    Xiwang Cao

  3. School of Physical and Mathematical Sciences, Nanyang Technological University (NTU), Nanyang, 637371, Singapore

    Gaojun Luo

Authors
  1. Xia Wu

    You can also search for this author inPubMed Google Scholar

  2. Wei Lu

    You can also search for this author inPubMed Google Scholar

  3. Xiwang Cao

    You can also search for this author inPubMed Google Scholar

  4. Gaojun Luo

    You can also search for this author inPubMed Google Scholar

Contributions

Xia Wu and Wei Lu wrote the manuscript text and gave the proof of Theorem 3.3, 3.4 and 3.6. Xiwang Cao and Gaojun Luo gave the proof of Theorem of 3.8. All authors reviewed the manuscript.

Corresponding author

Correspondence toWei Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC (Nos. 12371035, 11971102, 12171241), the Fundamental Research Funds for the Central Universities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Lu, W., Cao, X.et al. Minimal linear codes constructed from partial spreads.Cryptogr. Commun.16, 601–611 (2024). https://doi.org/10.1007/s12095-023-00689-5

Download citation

Keywords

Mathematics Subject Classification (2010)

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp