Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

OdorMapComparer: An Application for Quantitative Analyses and Comparisons of fMRI Brain Odor Maps

  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

Brain odor maps are reconstructed flat images that describe the spatial activity patterns in the glomerular layer of the olfactory bulbs in animals exposed to different odor stimuli. We have developed a software application, OdorMapComparer, to carry out quantitative analyses and comparisons of the fMRI odor maps. This application is an open-source window program that first loads two odor map images being compared. It allows image transformations including scaling, flipping, rotating, and warping so that the two images can be appropriately aligned to each other. It performs simple subtraction, addition, and average of signals in the two images. It also provides comparative statistics including the normalized correlation (NC) and spatial correlation coefficient. Experimental studies showed that the rodent fMRI odor maps for aliphatic aldehydes displayed spatial activity patterns that are similar in gross outlines but somewhat different in specific subregions. Analyses with OdorMapComparer indicate that the similarity between odor maps decreases with increasing difference in the length of carbon chains. For example, the map of butanal is more closely related to that of pentanal (with a NC = 0.617) than to that of octanal (NC = 0.082), which is consistent with animal behavioral studies. The study also indicates that fMRI odor maps are statistically odor-specific and repeatable across both the intra- and intersubject trials. OdorMapComparer thus provides a tool for quantitative, statistical analyses and comparisons of fMRI odor maps in a fashion that is integrated with the overall odor mapping techniques.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelsberger, H., Garaschuk, O., & Konnerth, A. (2005). Cortical calcium waves in resting newborn mice.Nature Neuroscience, 8, 988–990.

    Article PubMed CAS  Google Scholar 

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations.IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 567–585.

    Article  Google Scholar 

  • Brinder, H. R., Simmen, D., & Jones N. (2003). Impaired sense of smell in patients with nasal surgery.Clinical Otolaryngology and Allied Sciences, 28, 417–419.

    Article  Google Scholar 

  • Cole, L. C. (1949). The measurement of inter-specific association.Ecology, 30, 411–424.

    Article  Google Scholar 

  • Fedoroff, I. C., Stoner, S. A., Andersen, A. E., Doty, R. L., & Rolls, B. J. (1995). Olfactory dysfunction in anorexia and bulimia nervosa.International Journal of Eating Disorders, 18, 71–77.

    Article PubMed CAS  Google Scholar 

  • Guthrie, K. M., Anderson, A. J., Leon, M., & Gall, C. (1993). Odor-induced increases in c-fos mRNA expression reveal an anatomical “unit” for odor processing in olfactory bulb.Proceedings of the National Academy of Sciences of the United States of America, 90, 3329–3333.

    Article PubMed CAS  Google Scholar 

  • Inaki, K., Takahashi, Y. K., Nagayama, S., & Mori, K. (2002). Molecular-feature domains with posterodorsal–anteroventral polarity in the symmetrical sensory maps of the mouse olfactory bulb: Mapping of odourant-induced Zif268 expression.European Journal of Neuroscience, 15, 1563–1574.

    Article PubMed  Google Scholar 

  • Jacobs, M. A., Windham, J. P., Soltanian-Zadeh, H., Peck, D. J., & Knight, R. A. (1999). Registration and warping of magnetic resonance images to histological sections.Medical Physics, 26, 1568–1578.

    Article PubMed CAS  Google Scholar 

  • Johnson, B. A., Farahbod, H., Saber, S., & Leon, M. (2005). Effects of functional group position on spatial representations of aliphatic odorants in the rat olfactory bulb.Journal of Comparative Neurology, 483, 192–204.

    Article PubMed CAS  Google Scholar 

  • Johnson, B. A., Farahbod, H., Xu, Z., Saber, S., & Leon, M. (2004). Local and global chemotopic organization: General features of the glomerular representations of aliphatic odorants differing in carbon number.Journal of Comparative Neurology, 480, 234–249.

    Article PubMed CAS  Google Scholar 

  • Johnson, B. A., Ho, S. L., Xu, Z., Yihan, J. S., Yip, S., Hingco, E. E., et al. (2002). Functional mapping of the rat olfactory bulb using diverse odorants reveals modular responses to functional groups and hydrocarbon structural features.Journal of Comparative Neurology, 449, 180–194.

    Article PubMed  Google Scholar 

  • Johnson, B. A., Woo, C. C., Hingco, E. E., Pham, K. L., & Leon, M. (1999). Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb.Journal of Comparative Neurology, 409, 529–548.

    Article PubMed CAS  Google Scholar 

  • Johnson, B. A., Woo, C. C., & Leon, M. (1998). Spatial coding of odorant features in the glomerular layer of the rat olfactory bulb.Journal of Comparative Neurology, 393, 457–471.

    Article PubMed CAS  Google Scholar 

  • Jourdan, F. (1982). Spatial dimension in olfactory coding: A representation of the 2-deoxyglucose patterns of glomerular labeling in the olfactory bulb.Brain Research, 240, 341–344.

    Article PubMed CAS  Google Scholar 

  • Laska, M., Galizia, C. G., Giurfa, M., & Menzel, R. (1999). Olfactory discrimination ability and odor structure–activity relationships in honeybees.Chemical Senses, 24, 429–438.

    Article PubMed CAS  Google Scholar 

  • Laska, M., & Teubner, P. (1999). Olfactory discrimination ability for homologous series of aliphatic alcohols and aldehydes.Chemical Senses, 24, 263–270.

    Article PubMed CAS  Google Scholar 

  • Linster, C., & Hasselmo, M. E. (1999). Behavioral responses to aliphatic aldehydes can be predicted from known electrophysiological responses of mitral cells in the olfactory bulb.Physiology & behavior, 66, 497–502.

    Article CAS  Google Scholar 

  • Liu, N., Xu, F., Marenco, L., Hyder, F., Miller, P., & Shepherd, G. M. (2004). Informatics approaches to functional MRI odor mapping of the rodent olfactory bulb: OdorMapBuilder and OdorMapDB.Neuroinformatics, 2, 3–18.

    Article PubMed  Google Scholar 

  • Meister, M., & Bonhoeffer, T. (2001). Tuning and topography in an odor map on the rat olfactory bulb.Journal of Neuroscience, 21, 1351–1360.

    PubMed CAS  Google Scholar 

  • Mombaerts, P. (1999). Molecular biology of odorant receptors in vertebrates.Annual Review of Neuroscience, 22, 487–509.

    Article PubMed CAS  Google Scholar 

  • Niemeyer, P., & Peck, J. (1997).Exploring JAVA (2nd ed.). Sebastopol: O’Reilly.

    Google Scholar 

  • Ojima, M., Tonori, H., Sato, T., Sakabe, K., Miyata, M., Ishikawa, S., et al. (2002). Odor perception in patients with multiple chemical sensitivity.Tohoku Journal of Experimental Medicine, 198, 163–173.

    Article PubMed  Google Scholar 

  • Ramsden, B. M., Hung, C. P., & Roe, A. W. (2001). Real and illusory contour processing in area V1 of the primate: A cortical balancing act.Cerebral Cortex, 11, 648–665.

    Article PubMed CAS  Google Scholar 

  • Salcedo, E., Zhang, C., Kronberg, E., & Restrepo, D. (2005). Analysis of training-induced changes in ethyl acetate odor maps using a new computational tool to map the glomerular layer of the olfactory bulb.Chemical Senses, 30, 615–626.

    Article PubMed CAS  Google Scholar 

  • Schaefer, M. L., Young, D. A., & Restrepo, D. (2001). Olfactory fingerprints for major histocompatibility complex-determined body odors.Journal of Neuroscience, 21, 2481–2487.

    PubMed CAS  Google Scholar 

  • Serby, M., Larson, P., & Kalkstein, D. (1991). The nature and course of olfactory deficits in Alzheimer’s disease.American Journal of Psychiatry, 148, 357–360.

    PubMed CAS  Google Scholar 

  • Stewart, W. B., Kauer, J. S., & Shepherd, G. M. (1979). Functional organization of rat olfactory bulb analysed by the 2-deoxyglucose method.Journal of Comparative Neurology, 185, 715–734.

    Article PubMed CAS  Google Scholar 

  • Van Essen, D. C., Lewis, J. W., Drury, H. A., Hadjikhani, N., Tootell, R. B. H., Bakircioglu, M., et al. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases.Vision Research, 41, 1359–1378.

    Article PubMed  Google Scholar 

  • Xu, F., Greer, C. A., & Shepherd, G. M. (2000a). Odor maps in the olfactory bulb.Journal of Comparative Neurology, 422, 489–495.

    Article PubMed CAS  Google Scholar 

  • Xu, F., Kida, I., Hyder, F., & Shulman, R. G. (2000b). Assessment and discrimination of odor stimuli in rat olfactory bulb by dynamic functional MRI.Proceedings of the National Academy of Sciences of the United States of America, 97, 10601–10606.

    Article PubMed CAS  Google Scholar 

  • Xu, F., Liu, N., Kida, I., Rothman, D. L., Hyder, F., & Shepherd, G. M. (2003). Odor maps of aldehydes and esters revealed by fMRI in the glomerular layer of the mouse olfactory bulb.Proceedings of the National Academy of Sciences of the United States of America, 100, 11029–11034.

    Article PubMed CAS  Google Scholar 

  • Yang, X., Renken, R., Hyder, F., Siddeek, M., Greer, C. A., Shepherd, G. M., et al. (1998). Dynamic mapping at the laminar level of odor-elicited responses in rat olfactory bulb by functional MRI.Proceedings of the National Academy of Sciences of the United States of America, 95, 7715–7720.

    Article PubMed CAS  Google Scholar 

  • Zhao, H., Ivic, L., Otaki, J. M., Hashimoto, M., Mikoshiba, K., & Firestein S. (1998). Functional expression of a mammalian odorant receptor.Science, 279, 237–242.

    Article PubMed CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Center for Medical Informatics, Yale University School of Medicine, 333 Cedar Street, PO Box 208009, New Haven, CT, 06520-8009, USA

    Nian Liu & Perry L. Miller

  2. Department of Neurobiology, Yale University School of Medicine, New Haven, CT, 06520, USA

    Fuqiang Xu & Gordon M. Shepherd

  3. Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, 06520, USA

    Nian Liu & Perry L. Miller

  4. Department of MCD Biology, Yale University School of Medicine, New Haven, CT, 06520, USA

    Perry L. Miller

Authors
  1. Nian Liu

    You can also search for this author inPubMed Google Scholar

  2. Fuqiang Xu

    You can also search for this author inPubMed Google Scholar

  3. Perry L. Miller

    You can also search for this author inPubMed Google Scholar

  4. Gordon M. Shepherd

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toNian Liu.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp