Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Characterizations of semi-prequasi-invexity

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

Because of its importance in optimization theory, the concept of convexity has been generalized in various ways. With these generalizations, to seek some practical criteria for them is especially important. In this paper, some criteria are developed for semi-prequasi-invexity, which includes prequasi-invexity as the special case. Mutual characterizations among semi-prequasi-invex functions, strictly semi-prequasi-invex functions, and strongly semi-prequasi-invex functions are presented.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin D H, The essence of invexity,Journal of Optimization Theory and Applications, 1985,47(1): 65–76.

    Article MathSciNet MATH  Google Scholar 

  2. Ben-Israel A and Mond B, What is invexity?The Journal of the Australian Mathematical Society, Series B, 1986,28(1): 1–9.

    Article MathSciNet MATH  Google Scholar 

  3. Noor M A and Noor K I, Some characterizations of strongly preinvex functions,Journal of Mathematical Analysis and Applications, 2006,316(2): 697–706.

    Article MathSciNet MATH  Google Scholar 

  4. Fan L and Guo Y, On stronglyα-preinvex functions,Journal of Mathematical Analysis and Applications, 2007,330(2): 1412–1425.

    Article MathSciNet MATH  Google Scholar 

  5. Yang X M and Li D, On properties of preinvex functions,Journal of Mathematical Analysis and Applications, 2001,256(1): 229–241.

    Article MathSciNet MATH  Google Scholar 

  6. Yang X M, Yang X Q, and Teo K L, Characterizations and applications of prequasi-invex functions,Journal of Optimization Theory and Applications, 2001,110(3): 645–668.

    Article MathSciNet MATH  Google Scholar 

  7. Luo H Z and Xu Z K, On characterizations of prequasi-invex functions,Journal of Optimization Theory and Applications, 2004,120(2): 429–439.

    Article MathSciNet MATH  Google Scholar 

  8. Antczak T, (p, r)-invex sets and functions,Journal of Mathematical Analysis and Applications, 2001,263(2): 355–379.

    Article MathSciNet MATH  Google Scholar 

  9. Anderson G D, Vamanamurthy M K, and Vuorinen M, Generalized convexity and inequalities,Journal of Mathematical Analysis and Applications, 2007,335(2): 1294–1308.

    Article MathSciNet MATH  Google Scholar 

  10. Chen X, Some properties of semi-E-convex functions,Journal of Mathematical Analysis and Applications, 2002,275(1): 251–262.

    Article MathSciNet MATH  Google Scholar 

  11. Mukherjee R N and Keddy L V, Semicontinuity and quasiconvex functions,Journal of Optimization Theory and Applications, 1997,94(3): 715–720.

    Article MathSciNet MATH  Google Scholar 

  12. Mohan S R and Neogy S K, On invex sets and preinvex functions,Journal of Mathematical Analysis and Applications, 1995,189(3): 901–908.

    Article MathSciNet MATH  Google Scholar 

  13. Yang X M and Li D, Semistrictly preinvex functions,Journal of Mathematical Analysis and Applications, 2001,258(1): 287–308.

    Article MathSciNet MATH  Google Scholar 

  14. Luo H Z and Wu H X, On the relationships between G-preinvex functions and semistrictly G-preinvex functions,Journal of Computational and Applied Mathematics, 2008,222(2): 372–380.

    Article MathSciNet MATH  Google Scholar 

  15. Craven B D, Characterizing invex and related properties, Eberhard A, Hafjusavvas N, and Luc D T, (eds.):Generalized Convexity, Generalized Monotonicity and Applications, Springer, New York, 2005,77: 183–191.

    Chapter  Google Scholar 

  16. Ruiz-Garzón G, Osuna-Gómez R, and Rufián-Lizana A, Generalized invex monotonicity,European Journal of Operational Research, 2003,144(3): 501–512.

    Article MathSciNet MATH  Google Scholar 

  17. Zhao Y X, Wang S Y, and Coladas Uria L, Characterizations ofr-convex functions,Journal of Optimization Theory and Applications, 2010,145(1): 186–195.

    Article MathSciNet MATH  Google Scholar 

  18. Yang X M, Semi-preinvexity and multi-objective programming problems,Journal of Chongqing Normal University (Edition of Natural Science), 1994,11(1): 1–5 (in Chinese).

    MATH  Google Scholar 

  19. Yang X M and Liu S Y, Note three kinds of generalized convexity,Journal of Optimization Theory and Applications, 1995,86(2): 501–513.

    Article MathSciNet MATH  Google Scholar 

  20. Yang X M, Yang X Q, and Teo K L, Criteria for generalized invex monotonicities,European Journal of Operational Research, 2005,164(1): 115–119.

    Article MathSciNet MATH  Google Scholar 

  21. Avriel M,Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs, 1976 (in Chinese).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of International Trade and Economics, University of International Business and Economics, Beijing, 100029, China

    Yingxue Zhao

  2. School of Economics and Management, Beijing University of Aeronautics and Astronautics, Beijing, 100191, China

    Xiaoge Meng

  3. School of Management, University of Chinese Academy of Sciences, Beijing, 100190, China

    Han Qiao

  4. Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

    Shouyang Wang

  5. Department of Statistics and Operations Research, Faculty of Mathematics, Santiago de Compostela University, 15782, Santiago de Compostela, Spain

    Luis Coladas Uria

Authors
  1. Yingxue Zhao

    You can also search for this author inPubMed Google Scholar

  2. Xiaoge Meng

    You can also search for this author inPubMed Google Scholar

  3. Han Qiao

    You can also search for this author inPubMed Google Scholar

  4. Shouyang Wang

    You can also search for this author inPubMed Google Scholar

  5. Luis Coladas Uria

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toYingxue Zhao.

Additional information

This research was supported partially by the National Natural Science Foundation of China under Grant Nos. 71101088, 71003057, 71171129, the National Social Science Foundation of China under Grant No. 11&ZD169, the Shanghai Municipal Natural Science Foundation under Grant Nos. 10ZR1413200, 10190502500, 11510501900, 12ZR1412800, the China Postdoctoral Science Foundation under Grant Nos. 2011M500077, 2012T50442, the Science Foundation of Ministry of Education of China under Grant No. 10YJC630087, and the Doctoral Fund of Ministry of Education of China under Grant No. 20113121120002.

This paper was recommended for publication by Editor DAI Yuhong.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp