Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Context-Aware Semantic Type Identification for Relational Attributes

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Identifying semantic types for attributes in relations, known as attribute semantic type (AST) identification, plays an important role in many data analysis tasks, such as data cleaning, schema matching, and keyword search in databases. However, due to a lack of unified naming standards across prevalent information systems (a.k.a. information islands), AST identification still remains as an open problem. To tackle this problem, we propose a context-aware method to figure out the ASTs for relations in this paper. We transform the AST identification into a multi-class classification problem and propose a schema context aware (SCA) model to learn the representation from a collection of relations associated with attribute values and schema context. Based on the learned representation, we predict the AST for a given attribute from an underlying relation, wherein the predicted AST is mapped to one of the labeled ASTs. To improve the performance for AST identification, especially for the case that the predicted semantic types of attributes are not included in the labeled ASTs, we then introduce knowledge base embeddings (a.k.a. KBVec) to enhance the above representation and construct a schema context aware model with knowledge base enhanced (SCA-KB) to get a stable and robust model. Extensive experiments based on real datasets demonstrate that our context-aware method outperforms the state-of-the-art approaches by a large margin, up to 6.14% and 25.17% in terms of macro averageF1 score, and up to 0.28% and 9.56% in terms of weightedF1 score over high-quality and low-quality datasets respectively.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kandel S, Paepcke A, Hellerstein J, Heer J. Wrangler: Interactive visual specification of data transformation scripts. InProc. the 2011 SIGCHI Conference on Human Factors in Computing Systems, May 2011, pp.3363–3372.https://doi.org/10.1145/1978942.1979444.

  2. Rahm E, Bernstein P A. A survey of approaches to automatic schema matching.The VLDB Journal, 2001, 10(4): 334–350.https://doi.org/10.1007/s007780100057.

    Article MATH  Google Scholar 

  3. Zapilko B, Zloch M, Schaible J. Utilizing regular expressions for instance-based schema matching. InProc. the 7th International Conference on Ontology Matching, Nov. 2012, pp.240–241.https://doi.org/10.5555/2887596.2887623.

  4. Venetis P, Halevy A, Madhavan J, Paşca M, Shen W, Wu F, Miao G X, Wu C. Recovering semantics of tables on the web.Proceedings of the VLDB Endowment, 2011, 4(9): 528–538.https://doi.org/10.14778/2002938.2002939.

    Article  Google Scholar 

  5. Snipes G. Google data studio.Journal of Librarianship and Scholarly Communication, 2018, 6(1): eP2214.https://doi.org/10.7710/2162-3309.2214.

  6. Kaelin M. Microsoft power BI: A cheat sheet. Technical Report, Techrepublic, 2019.https://www.techrepublic.com/article/microsoft-power-bi-a-smart-persons-guide, July 2023.

  7. Black D. Data wrangling ‘decoder ring’ homogenizes polyglot data lakes. Technical Report, Enterprise Tech., 2016.https://www.enterpriseai.news/2016/02/11/trifactas-data-wrangling-decoder-ring-homogenizes-polyglot-data-lakes/, July 2023.

  8. Zhao C, He Y Y. Auto-EM: End-to-end fuzzy entity-matching using pre-trained deep models and transfer learning. InProc. the 2019 World Wide Web Conference, May 2019, pp.2413–2424.https://doi.org/10.1145/3308558.3313578.

  9. Chen J Y, Jiménez-Ruiz E, Horrocks I, Sutton C. Learning semantic annotations for tabular data. InProc. the 28th International Joint Conference on Artificial Intelligence, Jul. 2019, pp.2088–2094.https://doi.org/10.24963/ijcai.2019/289.

  10. Chen J Y, Jiménez-Ruiz E, Horrocks I, Sutton C. ColNet: Embedding the semantics of web tables for column type prediction. InProc. the 33rd AAAI Conference on Artificial Intelligence, Feb. 2019, pp.29–36.https://doi.org/10.1609/aaai.v33i01.330129.

  11. Ramnandan S K, Mittal A, Knoblock C A, Szekely P. Assigning semantic labels to data sources. InProc. the 12th European Semantic Web Conference, May 31–June 4, 2015, pp.403–417.https://doi.org/10.1007/978-3-319-18818-8_25.

  12. Pham M, Alse S, Knoblock C A, Szekely P. Semantic labeling: A domain-independent approach. InProc. the 15th International Semantic Web Conference, Oct. 2016, pp.446–462.https://doi.org/10.1007/978-3-319-46523-4_27.

  13. Hulsebos M, Hu K, Bakker M, Zgraggen E, Satyanarayan A, Kraska T, Demiralp Ç, Hidalgo C. Sherlock: A deep learning approach to semantic data type detection. InProc. the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Jul. 2019, pp.1500–1508.https://doi.org/10.1145/3292500.3330993.

  14. Krishna S. Introduction to Database and Knowledge-Base Systems. World Scientific Publishing, 1992.https://doi.org/10.1142/1374.

  15. Gao Y, Liang J, Han B, Yakout M, Mohamed A. Building a large-scale accurate and fresh knowledge graph. InProc. the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, August 2018.https://kdd2018tutorialt39.azurewebsites.net/, July 2023.

  16. Auer S, Bizer C, Kobilarov G, Lehmann J, Cyganiak R, Ives Z. DBpedia: A nucleus for a web of open data. InProc. the 6th International Semantic Web Conference and the 2nd Asian Semantic Web Conference, Nov. 2007, pp.722–735.https://doi.org/10.1007/978-3-540-76298-0_52.

  17. Bollacker K, Evans C, Paritosh P, Sturge T, Taylor J. Freebase: A collaboratively created graph database for structuring human knowledge. InProc. the 2008 ACM SIGMOD International Conference on Management of Data, Jun. 2008, pp.1247–1250.https://doi.org/10.1145/1376616.1376746.

  18. Rebele T, Suchanek F, Hoffart J, Biega J, Kuzey E, Weikum G. YAGO: A multilingual knowledge base from Wikipedia, Wordnet, and Geonames. InProc. the 15th International Semantic Web Conference, Oct. 2016, pp.177–185.https://doi.org/10.1007/978-3-319-46547-0_19.

  19. Zwicklbauer S, Einsiedler C, Granitzer, M, Seifert C. Towards disambiguating Web tables. InProc. the 2013 International Semantic Web Conference, Oct. 2013, pp.205–208.

  20. Goodfellow I, Bengio Y, Courville A. Deep Learning. MIT Press, 2016.

  21. LeCun Y, Bengio Y, Hinton G. Deep learning.Nature, 2015, 521(7553): 436–444.https://doi.org/10.1038/nature14539.

    Article  Google Scholar 

  22. Schmidhuber J. Deep learning in neural networks: An overview.Neural Networks, 2015, 61: 85–117.https://doi.org/10.1016/j.neunet.2014.09.003.

    Article  Google Scholar 

  23. Wang W, Zhang M H, Chen G, Jagadish H V, Ooi B C, Tan K L. Database meets deep learning: Challenges and opportunities.ACM SIGMOD Record, 2016, 45(2): 17–22.https://doi.org/10.1145/3003665.3003669.

    Article  Google Scholar 

  24. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, Polosukhin I. Attention is all you need. InProc. the 31st International Conference on Neural Information Processing Systems, Dec. 2017, pp.6000–6010.https://doi.org/10.5555/3295222.3295349.

  25. He K M, Zhang X Y, Ren S Q, Sun J. Deep residual learning for image recognition. InProc. the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Jun. 2016, pp.770–778.https://doi.org/10.1109/CVPR.2016.90.

  26. Ba J L, Kiros J R, Hinton G E. Layer normalization. arXiv: 1607.06450, 2016.https://arxiv.org/abs/1607.06450, July 2023.

  27. Devlin J, Chang M W, Lee K, Toutanova K. BERT: Pretraining of deep bidirectional transformers for language understanding. arXiv: 1810.04805, 2018.https://arxiv.org/abs/1810.04805, July 2023.

  28. May C, Wang A, Bordia S, Bowman S R, Rudinger R. On measuring social biases in sentence encoders. arXiv: 1903.10561, 2019.https://arxiv.org/abs/1903.10561, July 2023.

  29. Qiao Y F, Xiong C Y, Liu Z H, Liu Z Y. Understanding the behaviors of BERT in ranking. arXiv: 1904.07531, 2019.https://arxiv.org/abs/1904.07531, July 2023.

  30. Harris Z S. Distributional structure. Word, 1954, 10(2/3): 146–162.https://doi.org/10.1080/00437956.1954.11659520.

    Article  Google Scholar 

  31. Erk K. Vector space models of word meaning and phrase meaning: A survey.Language and Linguistics Compass, 2012, 6(10): 635–653.https://doi.org/10.1002/lnco.362.

    Article  Google Scholar 

  32. Pennington J, Socher R, Manning C. GloVe: Global vectors for word representation. InProc. the 2014 Conference on Empirical Methods in Natural Language Processing, Oct. 2014, pp.1532–1543.https://doi.org/10.3115/v1/D14-1162.

  33. Le Q, Mikolov T. Distributed representations of sentences and documents. InProc. the 31st International Conference on Machine Learning, Jun. 2014, pp.1188–1196.https://doi.org/10.5555/3044805.3045025.

  34. Köpcke H, Thor A, Rahm E. Evaluation of entity resolution approaches on real-world match problems.Proceedings of the VLDB Endowment, 2010, 3(1/2): 484–493.https://doi.org/10.14778/1920841.1920904.

    Article  Google Scholar 

  35. Konda P, Das S, Suganthan G C P, Doan A, Ardalan A, Ballard J R, Li H, Panahi F, Zhang H J, Naughton J, Prasad S, Krishnan G, Deep R, Raghavendra V. Magellan: Toward building entity matching management systems.Proceedings of the VLDB Endowment, 2016, 9(12): 1197–1208.https://doi.org/10.14778/2994509.2994535.

    Article  Google Scholar 

  36. Eberius J, Braunschweig K, Hentsch M, Thiele M, Ahmadov A, Lehner W. Building the Dresden Web Table Corpus: A classification approach. InProc. the 2nd International Symposium on Big Data Computing, Dec. 2015, pp.41–50.https://doi.org/10.1109/BDC.2015.30.

  37. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv: 1301.3781, 2013.https://arxiv.org/abs/1301.3781, July 2023.

  38. Matthews B W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme.Biochimica et Biophysica Acta (BBA)-Protein Structure, 1975, 405(2):442–451.https://doi.org/10.1016/0005-2795(75)90109-9.

  39. Chicco D. Ten quick tips for machine learning in computational biology.BioData Mining, 2017, 10(1): Article No. 35.https://doi.org/10.1186/s13040-017-0155-3.

  40. Everitt B S. The Cambridge Dictionary of Statistics (2nd edition). Cambridge University Press, 2002.

  41. Efthymiou V, Hassanzadeh O, Rodriguez-Muro M, Christophides V. Matching Web tables with knowledge base entities: From entity lookups to entity embeddings. InProc. the 16th International Semantic Web Conference, Oct. 2017, pp.260–270.https://doi.org/10.1007/978-3-319-68288-4_16.

  42. Shen S, Dong Z, Ye J Y, Ma L J, Yao Z W, Gholami A, Mahoney M W, Keutzer K. Q-BERT: Hessian based ultra low precision quantization of BERT. InProc. the 34th AAAI Conference on Artificial Intelligence, Feb. 2020, pp.8815–8821.https://doi.org/10.1609/aaai.v34i05.6409.

  43. Jiao X Q, Yin Y C, Shang L F, Jiang X, Chen X, Li L L, Wang F, Liu Q. TinyBERT: Distilling BERT for natural language understanding. arXiv: 1909.10351, 2019.https://arxiv.org/abs/1909.10351, July 2023.

  44. Lan Z Z, Chen M D, Goodman S, Gimpel K, Sharma P, Soricut R. ALBERT: A lite BERT for self-supervised learning of language representations. arXiv: 1909.11942, 2019.https://arxiv.org/abs/1909.11942, July 2023.

Download references

Author information

Authors and Affiliations

  1. Key Laboratory of Data Engineering and Knowledge Engineering of Ministry of Education, Renmin University of China, Beijing, 100872, China

    Yue Ding, Yu-He Guo, Wei Lu & Xiao-Yong Du

  2. School of Information, Renmin University of China, Beijing, 100872, China

    Yue Ding, Yu-He Guo, Wei Lu & Xiao-Yong Du

  3. Tencent (Beijing) Technology Company Limited, Beijing, 100080, China

    Hai-Xiang Li

  4. School of Computer Science and Technology, Beijing Institute of Technology, Beijing, 100081, China

    Mei-Hui Zhang

  5. College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China

    Hui Li

  6. Tencent (Shenzhen) Technology Company Limited, Shenzhen, 518057, China

    An-Qun Pan

Authors
  1. Yue Ding

    You can also search for this author inPubMed Google Scholar

  2. Yu-He Guo

    You can also search for this author inPubMed Google Scholar

  3. Wei Lu

    You can also search for this author inPubMed Google Scholar

  4. Hai-Xiang Li

    You can also search for this author inPubMed Google Scholar

  5. Mei-Hui Zhang

    You can also search for this author inPubMed Google Scholar

  6. Hui Li

    You can also search for this author inPubMed Google Scholar

  7. An-Qun Pan

    You can also search for this author inPubMed Google Scholar

  8. Xiao-Yong Du

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toWei Lu.

Supplementary Information

ESM 1

(PDF 708 kb)

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Guo, YH., Lu, W.et al. Context-Aware Semantic Type Identification for Relational Attributes.J. Comput. Sci. Technol.38, 927–946 (2023). https://doi.org/10.1007/s11390-021-1048-y

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp