333Accesses
3Citations
1 Altmetric
Abstract
Users are frequently overwhelmed by their uninterested programs due to the development of smart TV and the excessive number of programs. For addressing this issue, various recommendation methods have been introduced to TV fields. In TV content recommendation, auxiliary information, such as users’ personality traits and program features, greatly influences their program preferences. However, existing methods always fail to take auxiliary information into account. In this paper, aiming at personality program recommendation on smart TV platforms, we propose a novel Deep Factorization Integrated Attention Mechanism (DFIAM) model, which fully takes advantage of users’ personality traits, program and interaction features to construct users’ preference representations. DFIAM consists of two components, FNN component and DMF component. By suitably exploiting auxiliary information, FNN component devises a feature-interaction layer to capture the low- and higher-order feature interactions, while DMF component has a field-interaction layer to acquire higher-order field interactions. The embedding layer is divided into two layers , including feature embedding layer and field embedding layer. The two components share the feature embedding layer to profile latent representations of user and program features to reduce learning parameters and computational complexity. And the field embedding layer calculated by feature embedding layer is the input of DMF component. Besides, hierarchical attention networks are applied to self-adapt the influence of each feature and effectively capture more important feature interactions. To evaluate the performance of the DFIAM model, extensive experiments are conducted on two real-world datasets from different scenarios. The results of our proposed model have outperformed the mainstream neural network-based recommendation models in terms of RMSE, MAE and R-square.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Asabere, N. Y., Acakpovi, A.: Roppsa: Tv program recommendation based on personality and social awareness. Math. Probl. Eng. (2020)
Cheng, H. T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., Anderson, G., Corrado, G., Chai, W., Ispir, M., et al.: Wide & deep learning for recommender systems. In: Proceedings of the 1st workshop on deep learning for recommender systems, pp. 7–10 (2016)
Guo, H., Tang, R., Ye, Y., Li, Z., He, X.: Deepfm: a factorization-machine based neural network for ctr prediction. arXiv:1703.04247 (2017)
Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. Acm Trans Interact Intell Syst5(4), 1–19 (2015)
He, X., Chua, T. S.: Neural factorization machines for sparse predictive analytics. In: Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 355–364 (2017)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T. S.: Neural collaborative filtering. In: Proceedings of the 26th international conference on world wide web, pp. 173–182 (2017)
He, X., Zhang, H., Kan, M. Y., Chua, T. S.: Fast matrix factorization for online recommendation with implicit feedback. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 549–558 (2016)
Hong, F., Huang, D., Chen, G.: Interaction-aware factorization machines for recommender systems. Proc. AAAI Conf. Artif. Intell.33, 3804–3811 (2019)
Juan, Y., Zhuang, Y., Chin, W. S., Lin, C. J.: Field-aware factorization machines for ctr prediction. In: Proceedings of the 10th ACM Conference on Recommender Systems, pp. 43–50 (2016)
Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)
Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434, Las Vegas (2008)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer42(8), 30–37 (2009)
Li, W., Xu, B.: Aspect-based fashion recommendation with attention mechanism. IEEE Access8(8), 141814–141823 (2020)
Li, Y., Liu, M., Yin, J., Cui, C., Nie, L.: Routing micro-videos via a temporal graph-guided recommendation system. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1464–1472 (2019)
Lian, J., Zhou, X., Zhang, F., Chen, Z., Xie, X., Sun, G.: xdeepfm: Combining explicit and implicit feature interactions for recommender systems. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1754–1763 (2018)
Ni, Y., Ou, D., Liu, S., Li, X., Ou, W., Zeng, A., Si, L.: Perceive your users in depth: Learning universal user representations from multiple e-commerce tasks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 596–605 (2018)
Phelan, O., Mccarthy, K., Smyth, B.: Using twitter to recommend real-time topical news. In: Proceedings of the third ACM conference on Recommender systems, pp. 385–388. RecSys 2009, New York
Pyo, S., Kim, E., Kim, M.: Automatic and personalized recommendation of tv program contents using sequential pattern mining for smart tv user interaction. Multimed. Syst.19(6), 527–542 (2013)
Rendle, S.: Factorization Machines. In: 2010 IEEE International Conference on Data Mining, pp. 995–1000. IEEE (2010)
Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for personalized tag recommendation. In: Proceedings of the third ACM international conference on Web search and data mining, pp. 81–90 (2010)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th international conference on World Wide Web, pp. 285–295 (2001)
Song, W., Shi, C., Xiao, Z., Duan, Z., Xu, Y., Zhang, M., Tang, J.: Autoint: Automatic feature interaction learning via self-attentive neural networks. In: Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 1161–1170 (2019)
Véras, D., Prota, T., Bispo, A., Prudêncio, R., Ferraz, C.: A literature review of recommender systems in the television domain. Expert Syst. Appl.42(22), 9046–9076 (2015)
Wang, D., Zhang, X., Yu, D., Xu, G., Deng, S.: Came: Content-and context-aware music embedding for recommendation. IEEE Transactions on Neural Networks and Learning Systems (2020)
Wen, H., Zhang, J., Wang, Y., Lv, F., Bao, W., Lin, Q., Yang, K.: Entire space multi-task modeling via post-click behavior decomposition for conversion rate prediction. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2377–2386 (2020)
Xiao, J., Ye, H., He, X., Zhang, H., Wu, F., Chua, T. S.: Attentional factorization machines: Learning the weight of feature interactions via attention networks. arXiv:1708.04617 (2017)
Xue, H. J., Dai, X., Zhang, J., Huang, S., Chen, J.: Deep Matrix Factorization Models for Recommender Systems. In: Twenty-Sixth International Joint Conference on Artificial Intelligence, vol. 17, pp. 3203–3209, Melbourne (2017)
Zhang, H., Shen, F., Liu, W., He, X., Luan, H., Chua, T. S.: Discrete collaborative filtering. In: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, pp. 325–334 (2016)
Zhang, W., Du, T., Wang, J.: Deep Learning over Multi-Field Categorical Data. In: European Conference on Information Retrieval. Springer, pp. 45–57 (2016)
Zhao, Z., Hong, L., Wei, L., Chen, J., Nath, A., Andrews, S., Kumthekar, A., Sathiamoorthy, M., Yi, X., Chi, E.: Recommending what video to watch next: a multitask ranking system. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 43–51 (2019)
Zhou, X., Yue, X., Li, Y., Josang, A., Cox, C.: The state-of-the-art in personalized recommender systems for social networking. Artif. Intell. Rev.37(2), 119–132 (2012)
Acknowledgements
This work was supported by the Key Research and Development Program of Zhejiang Province, China(Grant No.2019C03138).
Author information
Authors and Affiliations
Institute of Intelligent Media Technology, Communication University of Zhejiang, Hangzhou, China
Yijie Zhou & Dingguo Yu
Key lab of Film and TV Media Technology of Zhejiang Province, Hangzhou, China
Yijie Zhou & Dingguo Yu
College of Media Engineering, Communication University of Zhejiang, Hangzhou, China
Xuewen Shen, Suiyu Zhang & Dingguo Yu
School of Computer Science, University of Technology Sydney, Sydney, Australia
Guandong Xu
- Yijie Zhou
Search author on:PubMed Google Scholar
- Xuewen Shen
Search author on:PubMed Google Scholar
- Suiyu Zhang
Search author on:PubMed Google Scholar
- Dingguo Yu
Search author on:PubMed Google Scholar
- Guandong Xu
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toDingguo Yu.
Ethics declarations
Competing interests
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, Y., Shen, X., Zhang, S.et al. DFIAM: deep factorization integrated attention mechanism for smart TV recommendation.World Wide Web24, 1465–1481 (2021). https://doi.org/10.1007/s11280-021-00924-0
Received:
Revised:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative