Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Sum of Sinusoids Simulator for Millimeter Wave Channel Model Towards 5G Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The aspirations of users to expand their data rate up to 1 Gbps in the fifth generation (5G) mobile networks open the horizon to exploit the row bandwidths in the millimeter wave (mmW) frequency bands. Several measurement campaigns have been launched to calculate the power delay profile and the large scale fading of the channels (path loss, shadowing) in mmW bands. In this paper, we design a 3D mmW multi-input multi-output channel model to extract the analytical narrowband impulse response. Based on a reference model, we establish a Sum-of-Sinusoids channel simulator in mmW frequency bands that is capable of generating the channel impulse response, which reflects the real conditions. The numerical results illustrate the outcomes of the simulator at different mmW frequency bands.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rappaport, T. S., et al. (2015).Millimeter wave wireless communications. Upper Saddle River: Pearson/Prentice Hall.

    Google Scholar 

  2. Prasad, R. (2014). 5G: 2020 and beyond. River Publishers Series in Communications.

  3. Prasad, R. (2016). 5G Outlook-innovations and applications. River Publishers Series in Communications.

  4. Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., Gutierrez, F., Hwang, D., & Rappaport, T. S. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York city. In2013 IEEE international conference on communications (ICC), Budapest (pp. 5143–5147).

  5. MacCartney, G. R., & Rappaport, T. S. (2014). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York city. In2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 4862–4867).

  6. MacCartney, G. R., Samimi, M. K., & Rappaport, T. S. (2014). Omnidirectional path loss models in New York city at 28 GHz and 73 GHz. In2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), Washington DC (pp. 227–231).

  7. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications.Proceedings of the IEEE,99(8), 1390–1436.

    Article  Google Scholar 

  8. Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!IEEE Access,1, 335–349.

    Article  Google Scholar 

  9. Badoi, Cornelia-Ionela, Prasad, Neeli, Croitoru, Victor, & Prasad, Ramjee. (2011). 5G based on cognitive radio.Wireless Personal Communications,57(3), 441–464.

    Article  Google Scholar 

  10. Badoi, Cornelia-Ionela, Prasad, Neeli, & Prasad, Ramjee. (2016). Virtualization and scheduling methods for 5G cognitive radio based wireless networks.Wireless Personal Communications,89(2), 599–619.

    Article  Google Scholar 

  11. Semov, Plamen T., Poulkov, Vladimir, Mihovska, Albena, & Prasad, Ramjee. (2016). Self-Resource allocation and scheduling challenges for heterogeneous networks deployment.Wireless Personal Communications,87(3), 759–777.

    Article  Google Scholar 

  12. Vulpe, Alexandru, Mihovska, Albena, Fratu, Octavian, Halunga, Simona, & Prasad, Ramjee. (2017). Admission control and scheduling algorithm for multi-carrier systems.Wireless Personal Communications,93(3), 629–645.

    Article  Google Scholar 

  13. 3GPP TR 36.873. (2014).Study on 3D channel model for LTE. Release 12, v1.3.0. (www.3gpp.org).

  14. Samimi, M. K., & Rappaport, T. S. (2014). Ultra-wideband statistical channel model for 28 GHz millimeter-wave urban NLOS environments. In2014 IEEE global telecommunications conference, Austin, Texas.

  15. Samimi, M. K., & Rappaport, T. S. (2015). 3-D statistical channel model for millimeter-wave outdoor mobile broadband communications. In2015 IEEE international conference on communications (ICC), London (pp. 2430–2436).

  16. Aulin, T. (1979). A modified model for the fading at a mobile radio channel.IEEE Transactions on Vehicular Technology,28(3), 182–203.

    Article  Google Scholar 

  17. Turkmani, A. M. D., & Parsons, J. D. (1991). Characterization of Mobile radio signals: Model description.IEE Proceedings I—Communications, Speech and Vision,138(6), 549–556.

    Article  Google Scholar 

  18. Abdi, A., & Kaveh, M. (2002). A space–time correlation model for multielement antenna systems in mobile fading channels.IEEE Journal on Selected Areas in Communications,20(3), 550–560.

    Article  Google Scholar 

  19. Zajic, A. G., & Stuber, G. L. (2008). Three-dimensional modeling, simulation, and capacity analysis of space–time correlated mobile-to-mobile channels.IEEE Transactions on Vehicular Technology,57(4), 2042–2054.

    Article  Google Scholar 

  20. Michailidis, E. T., & Kanatas, A. G. (2010). Three-dimensional HAP-MIMO channels: Modeling and analysis of space–time correlation.IEEE Transactions on Vehicular Technology,59(5), 2232–2242.

    Article  Google Scholar 

  21. Stuber, G. L. (2001).Principle of mobile communication (2nd ed.). Boston, MA: Kluwer.

    MATH  Google Scholar 

  22. Zajic, A. (2013).Mobile-to-mobile wireless channels. Norwood: Artech House.

    Google Scholar 

  23. Pätzold, M. (2012).Mobile radio channels (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  24. Zajic, A. G., & Stuber, G. L. (2008). Space–time correlated mobile-to-mobile channels: Modelling and simulation.IEEE Transactions on Vehicular Technology,57(2), 715–726.

    Article  Google Scholar 

  25. Mardia, K. V., & Jupp, P. E. (1999).Directional statistics. New York: Wiley.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Electronics and Electrical Communications Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt

    Basim Mohammed Eldowek, Saied M. Abd El-atty, El-Sayed M. El-Rabaie & Fathi E. Abd El-Samie

Authors
  1. Basim Mohammed Eldowek

    You can also search for this author inPubMed Google Scholar

  2. Saied M. Abd El-atty

    You can also search for this author inPubMed Google Scholar

  3. El-Sayed M. El-Rabaie

    You can also search for this author inPubMed Google Scholar

  4. Fathi E. Abd El-Samie

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toBasim Mohammed Eldowek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eldowek, B.M., Abd El-atty, S.M., El-Rabaie, ES.M.et al. Sum of Sinusoids Simulator for Millimeter Wave Channel Model Towards 5G Networks.Wireless Pers Commun103, 2125–2135 (2018). https://doi.org/10.1007/s11277-018-5900-5

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp