Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Optimal Biased Association Scheme with Heterogeneous User Distribution in HetNets

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper we consider the user association problem in heterogeneous networks where each user chooses to be associated to a base station based on the biased downlink received power. In contrast to previous studies where users are usually assumed to be uniformly distributed, and thereby a per-tier SINR biasing factor is used to balance the load of BSs among different tiers, we examine in this paper a scenario that one cell is overloaded, i.e., has a higher user intensity. In this case, the adjustment of the per-tier biasing factor becomes unreasonable, and thus we propose to adjust the biasing factor of the overloaded cell to offload the traffic to its surrounding cells. By maximizing the mean user utility in the area of this overloaded cell and its neighboring cells, the optimal biasing factor can be obtained. It is found that in the scenario where the overloaded cell is fully surrounded by a macro cell, the optimal biasing factor logarithmically decreases with the user’s intensity of the overloaded cell. Numerical results demonstrate that by using the optimal biasing factor of the overloaded cell in the considered scenario, the mean user rate in the overloaded cell increases from 23 to 87 % as the average number of cluster users increases from 10 to 80, and the overall mean user rate is also improved compared to the previous biased scheme without the adjustment of the overloaded cell in the literature. Our analysis provides guidance on the optimal tuning of the biasing factor of an overloaded cell and, is a step forward towards the goal of the adjustment of the biasing factor in a per-station fashion under heterogeneous spatial user distribution.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. \({A_0}\cap {A_m}\) is the boundary of two cells, and they are adjacent to each other if it is not a void set.

References

  1. Andrews, J., Buzzi, S., Wan, C., Hanly, S., Lozano, A., Soong, A., et al. (2014). What will 5G be.IEEE Journal on Selected Areas in Communications,32(6), 1065–1082.

    Article  Google Scholar 

  2. Andrews, J., Singh, S., Ye, Q., Lin, X., & Dhillon, H. (2014). An overview of load balancing in HetNets: Old myths and open problems.IEEE Transactions on Wireless Communications,21(2), 18–25.

    Article  Google Scholar 

  3. Aryafar, E., Keshavarz-Haddad, A., Wang, M., & Chiang, M. (2013). RAT selection games in HetNets. InProceedings of IEEE INFOCOM (pp. 998–1006).

  4. Bu, T., Li, L., & Ramjee, R. (2006). Generalized proportional fair scheduling in third generation wireless data networks. InProceedings of IEEE INFOCOM (pp. 1–12).

  5. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks.IEEE Wireless Communications Magazine,18(3), 10–21.

    Article  Google Scholar 

  6. Das, S., Viswanathan, H., & Rittenhouse, G. (2003). Dynamic load balancing through coordinated scheduling in packet data systems. InProceedings of IEEE INFOCOM (pp. 786–796).

  7. Dhillon, H., Ganti, R., Baccelli, F., & Andrews, J. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks.IEEE Journal on Selected Areas in Communications,30(3), 550–560.

    Article  Google Scholar 

  8. Elayoubi, S., Altman, E., Haddad, M., & Altman, Z. (2010). A hybrid decision approach for the association problem in heterogeneous networks. InProceedings of IEEE INFOCOM (pp. 1–5).

  9. Haenggi, M. (2012).Stochastic geometry for wireless networks. Cambridge: Cambridge University Press.

    Book MATH  Google Scholar 

  10. Haenggi, M., Andrews, J., Baccelli, F., Dousse, O., & Franceschetti, M. (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks.IEEE Journal on Selected Areas in Communications,27(7), 1029–1046.

    Article  Google Scholar 

  11. Jo, H., Sang, Y., Xia, P., & Andrews, J. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis.IEEE Transactions on Wireless Communications,11(10), 3484–3495.

    Article  Google Scholar 

  12. Lin, Y., Bao, W., Yu, W., & Liang, B. (2015). Optimizing user association and spectrum allocation in HetNets: A utility perspective.IEEE Journal on Selected Areas in Communications,33, 1025–1039.

    Article  Google Scholar 

  13. Niyato, D., & Hossain, E. (2009). Dynamics of network selection in heterogeneous wireless networks: An evolutionary game approach.IEEE Transactions on Vehicular Technology,58(4), 2008–2017.

    Article  Google Scholar 

  14. Sang, A., Wang, X., Madihian, M., & Gitlin, R. D. (2008). Coordinated load balancing, handoff/cell-site selection, and scheduling in multi-cell packet data systems.Wireless Networks,14, 103–120.

    Article  Google Scholar 

  15. Singh, S., & Andrews, J. (2014). Joint resource partitioning and offloading in heterogeneous cellular networks.IEEE Transactions on Wireless Communications,13(2), 888–901.

    Article  Google Scholar 

  16. Singh, S., Dhillon, H., & Andrews, J. (2013). Offloading in heterogeneous networks: modeling, analysis, and design insights.IEEE Transactions on Wireless Communications,12(5), 2484–2497.

    Article  Google Scholar 

  17. Stevens-Navarro, E., Lin, Y., & Wong, V. (2008). An MDP based vertical handoff decision algorithm for heterogeneous wireless networks.IEEE Transactions on Vehicular Technology,57(2), 1243–1254.

    Article  Google Scholar 

  18. Ulhaq, I., Shafiq, A., Yahya, K.M., & Iqbal, M.N. (2010). Cell breathing and cell capacity in CDMA: algorithm and evaluation. InProceedings of CSNDSP (pp. 432–436).

  19. Ye, Q., Rong, B., Chen, Y., Al-Shalash, M., Caramanis, C., & Andrews, J. (2013). User association for load balancing in heterogeneous cellular network.IEEE Transactions on Wireless Communications,12(6), 2706–2716.

    Article  Google Scholar 

  20. Zhu, J., Xu, L., Yang, L., & Xie, W. (2015). An optimal vertical handoff decision algorithm for multiple services with different priorities in heterogeneous wireless networks.Wireless Personal Communications,83(1), 527–549.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (973 program: 2013CB329005), National Natural Science Foundation of China (61401224, 61271237), Natural Science Foundation of Jiangsu Province of China (BK20140882) and NUPTSF (NY213061).

Author information

Authors and Affiliations

  1. College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China

    Fancheng Kong, Xinghua Sun & Hongbo Zhu

Authors
  1. Fancheng Kong

    You can also search for this author inPubMed Google Scholar

  2. Xinghua Sun

    You can also search for this author inPubMed Google Scholar

  3. Hongbo Zhu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHongbo Zhu.

Appendices

Appendix 1: Proof of Eq. (21)

For a random user in Region\(A'_0\) where the undesired signal from\({BS}_1\) is the major source of the interference, we have

$$E\left[ {\log \left( {\Pr \left( {SI{R_{A'_0}} \geqslant \tau } \right) } \right) } \right] = \int _0^\infty {{E_{{d_{{k_0}}},{g_{{k_0}}},{d_{{k_1}}}}}\left[ {\log \left( {\Pr \left( {\frac{{{P_{{k_0}}}d_{{k_0}}^{ - \alpha }{g_{{k_0}}}}}{{{P_{{k_1}}}d_{{k_1}}^{ - \alpha }{g_{{k_1}}}}} \geqslant \tau } \right) } \right) \left| {{g_{{k_1}}}} \right. } \right] } \cdot pdf_{{g_{{k_1}}}}\left( {{g_{{k_1}}}} \right) d{g_{{k_1}}},$$
(26)

where\(pdf_{{g_{{k_1}}}}\left( {{g_{{k_1}}}} \right)\) is probability density function (PDF) of random variable\(g_{k_1}\). Conditioned on a given\(g_{k_1}\) we have

$$\begin{aligned}&{E_{{d_{{k_0}}},{g_{{k_0}}},{d_{{k_1}}}}}\left[ {\log \left( {\Pr \left( {\frac{{{P_{{k_0}}}d_{{k_0}}^{ - \alpha }{g_{{k_0}}}}}{{{P_{{k_1}}}d_{{k_1}}^{ - \alpha }{g_{{k_1}}}}} \geqslant \tau } \right) } \right) \left| {{g_{{k_1}}}} \right. } \right] \nonumber \\ {}&\quad =\iint {{E_{{g_{{k_0}}}}}\left[ {\log \left( {\Pr \left( {\frac{{{P_{{k_0}}}d_{{k_0}}^{ - \alpha }{g_{k_0}}}}{{{P_{{k_1}}}d_{{k_1}}^{ - \alpha }{g_{{k_1}}}}} \geqslant \tau } \right) } \right) \left| {{g_{{k_1}}},{d_{{k_0}}},{d_{{k_1}}}} \right. } \right] } \cdot pdf_{{d_{{k_0}},{d_{{k_1}}}}}\left( {{d_{{k_0}}},{d_{{k_1}}}} \right) d{d_{{k_0}}}d{d_{{k_1}}}, \end{aligned}$$
(27)

where\(pdf_{{d_{{k_0}},{d_{{k_1}}}}}\left( {{d_{{k_0}}},{d_{{k_1}}}} \right)\) denotes the joint PDF of\(d_{k_0}\) and\(d_{k_1}\). Hence, conditioned on\(g_{k_1}\),\(d_{k_0}\) and\(d_{k_1}\), we can obtain that

$$\begin{aligned} {E_{{g_{{k_0}}}}}\left[ {\log \left( {\Pr \left( {\frac{{{P_{{k_0}}}d_{{k_0}}^{ - \alpha }{g_{{k_0}}}}}{{{P_{{k_1}}}d_{{k_1}}^{ - \alpha }{g_{{k_1}}}}} \geqslant \tau } \right) } \right) \left| {{g_{{k_1}}},{d_{{k_0}}},{d_{{k_1}}}} \right. } \right] \mathop = \limits ^{(a)}&{E_{{g_{{k_0}}}}}\left[ {\log \left( {\exp \left( { - \tau d_{{k_1}}^{ - \alpha }d_{{k_0}}^\alpha {P_{{k_1}}}P_{{k_0}}^{ - 1}} \right) } \right) \left| {{g_{{k_1}}},{d_{{k_0}}},{d_{{k_1}}}} \right. } \right] \nonumber \\ =&- \tau d_{{k_1}}^{ - \alpha }d_{{k_0}}^\alpha {P_{{k_1}}}P_{{k_0}}^{ - 1}{g_{{k_1}}}, \end{aligned}$$
(28)

where (a) follows that\(g_{k_0}\) is an exponential random variable with unit mean.

By substituting (27) and (28) into (26), we have

$$\begin{aligned} E\left[ {\log \left( {\Pr \left( {SI{R_{{A^{\prime }_0}}} \geqslant \tau } \right) } \right) } \right] =&- \tau {P_{{k_1}}}P_{{k_0}}^{ - 1}\int _0^\infty {{g_{{k_1}}}} {{pdf}_{{g_{{k_1}}}}}\left( {{g_{{k_1}}}} \right) d{g_{{k_1}}} \cdot \iint {\frac{{d_{{k_0}}^\alpha }}{{d_{{k_1}}^\alpha }}{{pdf}_{{d_{{k_0}}},{d_1}}}\left( {{d_{{k_0}}},{d_{{k_1}}}} \right) d{d_{{k_0}}}d{d_{{k_1}}}} \nonumber \\ \mathop = \limits ^{(b)}&- \tau {P_{{k_1}}}P_{{k_0}}^{ - 1}\iint _{{A^{\prime }_0}} {{{\left( {\frac{{{{\left( {x {-} a} \right) }^2} + {y^2}}}{{{x^2} {+} {y^2}}}} \right) }^{\frac{\alpha }{2}}}{{pdf}_{x,y}}\left( {x,y} \right) dxdy} \nonumber \\ \mathop = \limits ^{(c)}&- \iint _{{A^{\prime }_0}} {{{\left( {\frac{{{{\left( {x {-} a} \right) }^2} {+} {y^2}}}{{{x^2} + {y^2}}}} \right) }^{\frac{\alpha }{2}}}\frac{\tau {P_{{k_1}}}P_{{k_0}}^{ - 1}}{{\pi {{r^{\prime }}^2}}}dxdy}, \end{aligned}$$
(29)

where (b) follows that\(g_{k_1}\) is exponentially distributed with unit mean, i.e.,\({E_{{g_{{k_1}}}}}\left[ {{g_{{k_1}}}} \right] = 1\), and (c) follows that users are uniformly deployed within each association region of a cell, i.e.,\(pdf_{x,y}(x,y) = 1/\pi {{r^{\prime }}^2}\).

On the other hand,\(E\left[ {\log \left( {\Pr \left( {SI{R_{\Delta {A_0}}} \geqslant \tau } \right) } \right) } \right]\) can be derived by a similar approach and thus omitted here.

Appendix 2: Proof of Eq. (25)

With\({P_{{k_1}}} \gg {P_{{k_0}}}\), the radius of Region\({A_0}\) is much smaller than the distance between\({BS}_1\) and the overloaded\({BS}_0\), i.e.,\(r = \sqrt{\frac{{B{a^2}}}{{{{\left( {B - 1} \right) }^2}}}} \ll a\). We then have\(B \gg 1\), and thus\(\frac{{Ba}}{{B - 1}} \approx a\). In addition, as the biasing factor of\({BS}_0\) decreases to offload some users to\({BS}_1\), we have\(B^{\prime } > B \gg 1\), and thus\(\frac{{Ba}}{{B - 1}} = \frac{{B'a}}{{B^{\prime } - 1}} \approx a\). Therefore, both\(A_0\) and\(A^{\prime }_0\) can be regarded as circular areas with the same center\(\left( {a,0} \right)\) but different radius. Meanwhile, since\(r^{\prime } < r \ll a\), the distance from\({BS}_1\) to a random user in region\({A_0}\) or\({A^{\prime }_0}\) can be approximately regarded as a constant, i.e.,\({d_{{k_1}}} \approx a\). We then have

$$\begin{aligned} E\left[ {\log \left( {\Pr \left( {SIR_{A^{\prime }_0} \geqslant \tau } \right) } \right) } \right] \approx&- \tau \frac{{{P_{{k_1}}}}}{{{P_{{k_0}}}}}{E_{{d_{{k_0}}},{d_{{k_1}}}}}\left[ {\frac{{d_{{k_0}}^\alpha }}{{{a^\alpha }}}} \right] \nonumber \\ \mathop = \limits ^{(a)}&- \tau \frac{{{P_{{k_1}}}}}{{{P_{{k_0}}}{a^\alpha }}}\int _0^{r^{\prime }} {d_{{k_0}}^\alpha } \cdot \frac{{2{d_{{k_0}}}}}{{r{'^2}}}d{d_{{k_0}}} = - \frac{{2\tau {P_{{k_1}}}}}{{\left( {\alpha {+} 2} \right) {P_{{k_0}}}}}{\left( {\frac{{r^{\prime }}}{a}} \right) ^\alpha } \end{aligned}$$
(30a)

and

$$\begin{aligned} E\left[ {\log \left( {\Pr \left( {SIR_{\Delta {A_0}} \geqslant \tau } \right) } \right) } \right] \approx&- \tau \frac{{{P_{{k_0}}}}}{{{P_{{k_1}}}}}{E_{{d_{{k_0}}},{d_{{k_1}}}}}\left[ {\frac{{{a^\alpha }}}{{d_{{k_0}}^\alpha }}} \right] \mathop = \limits ^{(b)} - \tau \frac{{{P_{{k_0}}}}}{{{P_{{k_1}}}}}{a^\alpha }\int _{r^{\prime }}^r {\frac{1}{{d_{{k_0}}^\alpha }}\frac{{2\left( {{d_{{k_0}}} {-} r'} \right) }}{{{{\left( {r {-} r^{\prime }} \right) }^2}}}d{d_{{k_0}}}} \nonumber \\ =\,&C - \frac{{2\tau {P_{{k_0}}}{a^\alpha }}}{{{P_{{k_1}}}{{(r {-} r^{\prime })}^2}}}\left( {\frac{{{r^{2 {-} \alpha }} {-} r{'^{2 {-} \alpha }}}}{{2 {-} \alpha }} {-} \frac{{r^{\prime }{r^{1 {-} \alpha }} {-} r{'^{2 {-} \alpha }}}}{{1 {-} \alpha }}} \right) , \end{aligned}$$
(30b)

where (a) and (b) follow the property of uniform distribution of a random user inside a circular area.

As regular users’ intensity is usually much lower than that of cluster users, i.e.,\({\lambda _r} \ll {\lambda _c}\), and the association area of the macro cell is much larger than that of other cells, (19) and (20) can be further written as

$${{\Pr } _{A^{\prime }_0}}= \frac{{{{\overline{N} }_c}{{r^{\prime }}^2}}}{{{{\overline{N} }_t}{r^2}}},$$
(31a)
$${{\Pr } _{{A_1}}}= \frac{{{{\overline{N} }_r}}}{{{{\overline{N} }_t}}},$$
(31b)
$${{\Pr } _{\Delta {A_0}}}= \frac{{{{\overline{N} }_c}{{\left( {r - r^{\prime }} \right) }^2}}}{{{{\overline{N} }_t}{r^2}}},$$
(31c)

and

$$E\left[ {\log \left( {{N_0}} \right) } \right] \approx \log \left( {{\lambda _c}\pi {{r^{\prime }}^2}} \right),$$
(32a)
$$E\left[ {\log \left( {{N_1}} \right) } \right] \approx \log \left( {{\lambda _r}{S_{{A_1}}} + {\lambda _c}\pi {{\left( {r - r^{\prime }} \right) }^2}} \right).$$
(32b)

Finally, by substituting (18), (30)–(32) into (13), the objective function (25) can be obtained.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp