Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Performance Analysis of a Reduced Rank Spatial Filter for Interference Cancellation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In the interference mitigation context, it has been shown by simulations in Fety et al. (International symposium on wireless communication systems, pp 241–245,2012), the outperformance of the coefficient constraints (CC) versus the power constraint on the channel impulse response, in terms of BER about 1–3 dB. However, no theoretical justification has been introduced. In this paper, we have proved theoretically this result. Moreover, we have investigated an interesting issue of the CC constraint concerning the choice of the coefficient position; we have given a full theoretical framework analysis about this feature. Two substantial propositions have been introduced to this end. Theoretical results were validated by simulations.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fety, L., Maoudj, R., Terre, M., Martinod, L., & Mege, P. (2012, August). Reduced rank spatial filter for interference cancellation. InInternational symposium on wireless communication systems, pp. 241–245.

  2. Andrews, J. G. (2005). Interference cancellation for cellular systems: A contemporary overview.IEEE Wireless Communications Magazine,12, 19–29.

    Article  Google Scholar 

  3. Paulraj, A., Naber, R., & Gore, D. (2003).Introduction to space–time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  4. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas.Wireless Personal Communication,6, 311–335.

    Article  Google Scholar 

  5. Daleh, M., Daleh, M.A., & Verghese, G. (2000).Lectures on dynamic systems and control. Dept. of Elec. Eng. and Comp. Sci., Mass. Inst. Tech.

  6. Higham, N. J. (1987). A survey of condition number estimation for triangular matrices.SIAM Review,29(4), 575–596.

    Article MathSciNet MATH  Google Scholar 

  7. Lagunas, M. A., Vidal, J., & Pérez Neira, A. I. (2000). Joint array combining and MLSE for single-user receivers in multipath Gaussian multiuser channels.IEEE Journal on Selected Areas in Communication,18(11), 2252–2259.

    Article  Google Scholar 

  8. Pérez Neira, A. I., & Mestre, X. (2002, May). A comparative performance study of different space-frequency filters for OFDM. InProceedings of the IEEE international conference on acoustics, speech, and signal processing.

  9. Vidal, J., Cabrera, M., & Augustin, A. (2000). Full exploitation of diversity in space–time MMSE receivers. In52nd Vehicular technology conference, IEEE VTS-Fall VTC 2000, Vol. 5, pp. 2497–2502.

  10. Maoudj, R., & Terre, M. (2012, September). Post-combiner for interference cancellation algorithm. InInternational conference on software, telecommunications and computer networks.

  11. Edelman, A. (1988). Eigenvalues and condition number of random matrices.SIAM Journal on Matrix Analysis and Applications,9(4), 543–560.

    Article MathSciNet MATH  Google Scholar 

  12. Ratnarajah, T., Vaillancourt, R., & Alvo, M. (2005). Eigenvalues and condition numbers of complex random matrices.SIAM Journal on Matrix Analysis and Applications,26(2), 441–456.

    Article MathSciNet MATH  Google Scholar 

  13. Matthaiou, M., McKay, M. R., Smith, P. J., & Nossek, J. A. (2010). On the condition number distribution of complex wishart matrices.IEEE Transactions on Communications,58(6), 1705–1717.

    Article  Google Scholar 

  14. Okumura, Y., et al. (1968). Field strength and its variability in VHF and UHF land-mobile radio service.Review of the Electrical Communication Laboratory NTT,16, 9–10.

    Google Scholar 

  15. Hata, M., et al. (1980). Empirical formula for propagation loss in land mobile radio services.IEEE Transactions On Vehicular Technology,29, 317–325.

    Article  Google Scholar 

  16. Mullen, J., &, Huang, H. (2005). Impact of multipath fading in wireless ad hoc networks. InProceedings of the 2nd ACM international workshop on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks, NY, USA.

  17. Jakes, W. C. (1975).Microwave mobile communications. New York: Wiley.

    Google Scholar 

  18. COST-207: Digital land mobile radio communications. Final report of the COST-Project 207, Commission of the European Community, Brussels, 1989.

Download references

Author information

Authors and Affiliations

  1. Lab. Cedric/Laetitia Cnam, 292 Rue Saint Martin, 75141, Paris Cedex 03, France

    Rabah Maoudj, Ali Dziri & Michel Terre

Authors
  1. Rabah Maoudj

    You can also search for this author inPubMed Google Scholar

  2. Ali Dziri

    You can also search for this author inPubMed Google Scholar

  3. Michel Terre

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAli Dziri.

Appendix

Appendix

Equation (27) can be rewritten as,

$$ \hbox{min}_{a} Ra^{2} \backslash a\left( i \right) = 1,\quad 2L < i \le N $$

Define the sub matrix\( \varvec{R}_{i} \in C^{N \times N - 1} \) as the matrixR except theith column vector, the vector\( - \varvec{r}_{i} \in C^{N \times 1} \) theith column vector ofR andai isa vector without the theith component. Therefore,

$$ \varvec{Ra} = \varvec{R}_{i} \varvec{a}_{i} - \varvec{r}_{i} $$

Then the last equation becomes,

$$ \hbox{min}_{{a_{i} }} \left( {R_{i} a_{i} - r_{i} } \right)^{H} \left( {R_{i} a_{i} - r_{i} } \right) $$

By nulling the first derivation with respect toai, thenai is solution of the following linear system,

$$ a_{i} = \arg_{{a_{i} }} R_{i}^{H} R_{i} a_{di} - R_{i}^{H} r_{i} = 0 $$

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maoudj, R., Dziri, A. & Terre, M. Performance Analysis of a Reduced Rank Spatial Filter for Interference Cancellation.Wireless Pers Commun85, 1635–1651 (2015). https://doi.org/10.1007/s11277-015-2859-3

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp