Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A List Sphere Decoding Algorithm with Improved Radius Setting Strategies

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Complexity of different sphere-decoding (SD) algorithms is heavily influenced by their own distinctive computational features. Sphere radius setting for initialization and reduction during the search process, is one of the most important aspects affecting the SD efficiency. This paper examines radius setting strategies for list sphere-decoding (LSD) algorithms to calculate the soft-output information for coded systems, and proposes strategies to improve both the radiusinitialization andreduction in the original LSD algorithm. The proposed strategies can avoid the instability problem in the radius initialization of the original LSD algorithm and significantly increase its search efficiency as confirmed by simulation for both full-column-rank and underdetermined MIMO channels.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrell E., Eriksson T., Vardy A., Zeger K. (2002) Closest point search in lattices. IEEE Transactions On Information Theory 48(8): 2201–2214

    Article MathSciNet MATH  Google Scholar 

  2. Damen O., Chkeif A., Belfiore J. C. (2000) Lattice code decoder for space-time codes. IEEE communications Letters 4(5): 161–163

    Article  Google Scholar 

  3. Vikalo H., Hassibi B., Kailath T. (2004) Iterative decoding for MIMO channels via modified sphere decoding. IEEE Transactions Wireless Communication 3(6): 2299–2311

    Article  Google Scholar 

  4. Brunel L. (2004) Multiuser detection techniques using maximum likelihood sphere decoding in multicarrier CDMA systems. IEEE Transactions Wireless Communication 3(3): 949–957

    Article MathSciNet  Google Scholar 

  5. Hassibi B., Vikalo H. (2005) On the sphere decoding algorithm: Part I, the expected complexity. IEEE Transactions Signal Processing 53(8): 2806–2818

    Article MathSciNet  Google Scholar 

  6. Vikalo H., Hassibi B. (2005) On the sphere decoding algorithm: Part II, generalizations, second-order statistics, and applications to communications. IEEE Transactions Signal Processing 53(8): 2819–2834

    Article MathSciNet  Google Scholar 

  7. Jalden J., Ottersten B. (2005) On the complexity of sphere decoding in digital communications. IEEE Transactions Signal Processing 53(4): 1474–1484

    Article MathSciNet  Google Scholar 

  8. Cui, T., Tellambura, C. (2004). An efficient generalized sphere decoder for rank-deficient MIMO systems.IEEE Vehicular Technical Conference Fall.

  9. Damen M., Meraim K. A., Belfiore J. C. (2000) Generalised sphere decoder for asymmetrical space-time communication architecture. Electronics Letters 36(2): 166–167

    Article  Google Scholar 

  10. Dayal, P., Varanasi, M. K. (2003). A fast generalized sphere decoder for optimum decoding of under-determined MIMO systems,41st Annual allerton Conference on communications Control And computer.

  11. Yang Z., Liu C., He J. (2005) A new approach for fast generalized sphere decoding in MIMO systems. IEEE Signal Processing Letters 12(1): 41–44

    Article MATH  Google Scholar 

  12. Wang P., Le-Ngoc T. (2009) A low-complexity generalized sphere decoding approach for underdetermined linear communication systems: performance and complexity evaluation. IEEE Transactions on Communications 57(11): 3376–3388

    Article  Google Scholar 

  13. Chang X. W., Yang X. H. (2006) A new fast generalized sphere decoding algorithm for underdetermined sphere decoding algorithm for underdetermined MIMO systems. 23rd Biennial symposium on communications, pp 18–21

    Google Scholar 

  14. Boutros, J., Gresset, N., Brunel, L., Fossorier, M. (2003). Soft-input soft-output lattice sphere decoder for linear channels (pp. 1583–1587).IEEE Globecom 2003.

  15. Hochwald B. M., Brink S. T. (2003) Achieving near-capacity on a multiple-antenna channel. IEEE Transactions on Communications 51: 389–3991

    Article  Google Scholar 

  16. Wang R., Giannakis G. (2006) Approaching MIMO channel capacity with reduced-complexity soft sphere decoding. IEEE Transactions on Communications 54: 587–590

    Article  Google Scholar 

  17. Wiesel, A., Mestre, X., Pages A., Fonollosa, J. R. (2003). Efficient implementation of sphere demodulation.2003 4th Workshop on Signal Processing, pp. 36–40.

Download references

Author information

Authors and Affiliations

  1. Department of Electrical and Computer Engineering, McGill University, Montréal, QC, H3A 2A7, Canada

    Ping Wang & Tho Le-Ngoc

Authors
  1. Ping Wang

    You can also search for this author inPubMed Google Scholar

  2. Tho Le-Ngoc

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toTho Le-Ngoc.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp