Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Profit optimized task scheduling for vehicular fog computing

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Vehicular fog computing has emerged as a promising paradigm that provisions computing at the network edge and alleviates the computation workload of static edge computing servers. In this regard, building computing facilities on top of jammed vehicles is particularly attractive and practically viable. However, the respective offloading mechanisms and resource sharing have been less explored. In this work, we propose a novel jammed vehicular cloudlet (JVC) assisted task offloading framework that aggregates and leverages underutilized communication and computation resources of congested vehicles and nearby road side unit to serve resource-intensive tasks of mobile users. To motivate resource provisioning by the JVCs in a non-competitive environment, we design an incentive mechanism that charges offloading user and rewards the serving JVC. With aim to maximize the total profit earned by JVCs, we formulate joint task assignment and resource allocation problem in presence of data segmentation, task deadline, and budget constraints. The formulated problem is mixed integer non-linear programming problem, and we directly obtain its solution using genetic algorithm (GA). We further devise a greedy fractional-knapsack based resource allocation scheme named profit-aware task scheduling (PATS). The extensive evaluation under realistic human mobility trajectories demonstrates that, GA outperforms other baseline schemes in maximizing the total profit of JVCs while PATS achieves comparable performance and serves more users with much lower computation complexity.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

ArticleOpen access24 February 2021

Data availibility

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions.Future Generation Computer Systems,29(7), 1645–1660.

    Article MATH  Google Scholar 

  2. Saleem, U., Liu, Y., Jangsher, S., Tao, X., & Li, Y. (2020). Latency minimization for D2D-enabled partial computation offloading in mobile edge computing.IEEE Transactions on Vehicular Technology,69(4), 4472–4486.

    Article  Google Scholar 

  3. Sabella, D., Vaillant, A., Kuure, P., Rauschenbach, U., & Giust, F. (2016). Mobile-edge computing architecture: The role of MEC in the internet of things.IEEE Consumer Electronics Magazine,5(4), 84–91.

    Article  Google Scholar 

  4. Hou, X., Li, Y., Chen, M., Wu, D., Jin, D., & Chen, S. (2016). Vehicular fog computing: A viewpoint of vehicles as the infrastructures.IEEE Transactions on Vehicular Technology,65(6), 3860–3873.

    Article MATH  Google Scholar 

  5. Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2014). A survey on vehicular cloud computing.Journal of Network and Computer applications,40, 325–344.

    Article  Google Scholar 

  6. Sookhak, M., Yu, F. R., He, Y., Talebian, H., Safa, N. S., Zhao, N., Khan, M. K., & Kumar, N. (2017). Fog vehicular computing: Augmentation of fog computing using vehicular cloud computing.IEEE Vehicular Technology Magazine,12(3), 55–64.

    Article  Google Scholar 

  7. INRIX. (2019). Global Traffic Scorecard.https://inrix.com/scorecard/. Accessed: 20 Oct 2020

  8. Xiao, X., Hou, X., Wang, C., Li, Y., Hui, P., & Chen, S. (2019). Jamcloud: Turning traffic jams into computation opportunities-whose time has come.IEEE Access,7, 115797–115815.

    Article  Google Scholar 

  9. Xiao, X., Hou, X., Chen, X., Liu, C., & Li, Y. (2019). Quantitative analysis for capabilities of vehicular fog computing.Information Sciences,501, 742–760.

    Article MATH  Google Scholar 

  10. Saleem, U., Liu, Y., Jangsher, S., Li, Y., & Jiang, T. (2020). Mobility-aware joint task scheduling and resource allocation for cooperative mobile edge computing.IEEE Transactions on Wireless Communications,20(1), 360–374.

    Article MATH  Google Scholar 

  11. Birhanie, H.M., Messous, M.A., Senouci, S.-M., Aglzim, E.-H., & Ahmed, A.M. (2018). MDP-based resource allocation scheme towards a vehicular fog computing with energy constraints. In: IEEE GLOBECOM, pp. 1–6

  12. Mekki, T., Jmal, R., Chaari, L., Jabri, I., & Rachedi, A. (2020). Vehicular fog resource allocation scheme: A multi-objective optimization based approach. In2020 IEEE 17th annual consumer communications & networking conference (CCNC) (pp. 1–6). IEEE

  13. Zhao, J., Dong, P., Ma, X., Sun, X., & Zou, D. (2020). Mobile-aware and relay-assisted partial offloading scheme based on parked vehicles in B5G vehicular networks.Physical Communication,42, 101163.

    Article  Google Scholar 

  14. Sun, F., Hou, F., Cheng, N., Wang, M., Zhou, H., Gui, L., & Shen, X. (2018). Cooperative task scheduling for computation offloading in vehicular cloud.IEEE Transactions on Vehicular Technology,67(11), 11049–11061.

    Article  Google Scholar 

  15. Sorkhoh, I., Ebrahimi, D., Assi, C., Sharafeddine, S., & Khabbaz, M. (2020). An infrastructure-assisted workload scheduling for computational resources exploitation in fog-enabled vehicular network.IEEE Internet Things Journal,7, 5021–5032.

    Article  Google Scholar 

  16. Zhou, Y., Liu, K., Xu, X., Guo, S., Wu, Z., Lee, V., & Son, S. (2020). Distributed scheduling for time-critical tasks in a two-layer vehicular fog computing architecture. In2020 IEEE 17th annual consumer communications & networking conference (CCNC) (pp. 1–7). IEEE.

  17. Hameed, A. R., ul Islam, S., Ahmad, I., & Munir, K. (2021). Energy-and performance-aware load-balancing in vehicular fog computing.Sustainable Computing: Informatics and Systems,30, 100454.

    MATH  Google Scholar 

  18. Pu, L., Chen, X., Mao, G., Xie, Q., & Xu, J. (2018). Chimera: An energy-efficient and deadline-aware hybrid edge computing framework for vehicular crowdsensing applications.IEEE Internet of Things Journal,6(1), 84–99.

    Article MATH  Google Scholar 

  19. Zhou, Z., Liu, P., Feng, J., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2019). Computation resource allocation and task assignment optimization in vehicular fog computing: A contract-matching approach.IEEE Transactions on Vehicular Technology,68(4), 3113–3125.

    Article  Google Scholar 

  20. Yang, C., Lou, W., Liu, Y., & Xie, S. (2020). Resource allocation for edge computing-based vehicle platoon on freeway: A contract-optimization approach.IEEE Transactions on Vehicular Technology,69(12), 15988–16000.

    Article MATH  Google Scholar 

  21. Wang, Q., Guo, S., Wang, Y., & Yang, Y. (2019). Incentive mechanism for edge cloud profit maximization in mobile edge computing. InICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1–6 . IEEE

  22. Jian, Z., Muqing, W., & Min, Z. (2019). Joint computation offloading and resource allocation in C-RAN with MEC based on spectrum efficiency.IEEE Access,7, 79056–79068.

    Article  Google Scholar 

  23. Huang, X., Zhang, B., & Li, C. (2021). Platform profit maximization on service provisioning in mobile edge computing.IEEE Transactions on Vehicular Technology,70(12), 13364–13376.

    Article MATH  Google Scholar 

  24. Teng, H., Li, Z., Cao, K., Long, S., Guo, S., & Liu, A. (2022). Game theoretical task offloading for profit maximization in mobile edge computing.IEEE Transactions on Mobile Computing,22, 5313–5329.

    MATH  Google Scholar 

  25. Huang, X., He, L., Chen, X., Wang, L., & Li, F. (2021). Revenue and energy efficiency-driven delay-constrained computing task offloading and resource allocation in a vehicular edge computing network: A deep reinforcement learning approach.IEEE Internet of Things Journal,9(11), 8852–8868.

    Article MATH  Google Scholar 

  26. Rai, K., Vemireddy, S., & Rout, R.R. (2021). Fuzzy logic based task scheduling algorithm in vehicular fog computing framework. In2021 IEEE 18th India Council International Conference (INDICON) (pp. 1–6). IEEE

  27. Feng, Z., & Zhu, Y. (2016). A survey on trajectory data mining: Techniques and applications.IEEE Access,4, 2056–2067.

    Article MATH  Google Scholar 

  28. Li, Y., Li, H., Xu, G., Xiang, T., & Lu, R. (2022). Practical privacy-preserving federated learning in vehicular fog computing.IEEE Transactions on Vehicular Technology,71(5), 4692–4705.

    Article MATH  Google Scholar 

  29. Hao, P., Sun, Z., Ban, X. J., Guo, D., & Ji, Q. (2013). Vehicle index estimation for signalized intersections using sample travel times.Procedia-Social and Behavioral Sciences,80, 473–490.

    Article MATH  Google Scholar 

  30. Guo, Q., Li, L., & Ban, X. J. (2019). Urban traffic signal control with connected and automated vehicles: A survey.Transportation Research Part C: Emerging Technologies,101, 313–334.

    Article MATH  Google Scholar 

  31. Zheng, J., & Liu, H. X. (2017). Estimating traffic volumes for signalized intersections using connected vehicle data.Transportation Research Part C: Emerging Technologies,79, 347–362.

    Article MATH  Google Scholar 

  32. Li, Y., Jin, D., Wang, Z., Hui, P., Zeng, L., & Chen, S. (2013). A Markov jump process model for urban vehicular mobility: Modeling and applications.IEEE Transactions on Mobile Computing,13(9), 1911–1926.

    Article MATH  Google Scholar 

  33. Munoz, O., Pascual-Iserte, A., & Vidal, J. (2014). Optimization of radio and computational resources for energy efficiency in latency-constrained application offloading.IEEE Transactions on Vehicular Technology,64(10), 4738–4755.

    Article MATH  Google Scholar 

  34. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective.IEEE Communications Surveys & Tutorials,19(4), 2322–2358.

    Article MATH  Google Scholar 

  35. Wang, Y., Sheng, M., Wang, X., Wang, L., & Li, J. (2016). Mobile-edge computing: Partial computation offloading using dynamic voltage scaling.IEEE Transactions on Communications,64(10), 4268–4282.

    MATH  Google Scholar 

  36. Pisinger, D. (2005). Where are the hard knapsack problems?Computers & Operations Research,32(9), 2271–2284.

    Article MathSciNet MATH  Google Scholar 

  37. Ishii, H., Ibaraki, T., & Mine, H. (1977). Fractional knapsack problems.Mathematical Programming,13(1), 255–271.

    Article MathSciNet MATH  Google Scholar 

  38. Davis, L. (1994).Handbook of genetic algorithms. Van Nostrand Reinhold.

    MATH  Google Scholar 

  39. Hussein, N. H., Yaw, C. T., Koh, S. P., Tiong, S. K., & Chong, K. H. (2022). A comprehensive survey on vehicular networking: Communications, applications, challenges, and upcoming research directions.IEEE Access,10, 86127–86180.https://doi.org/10.1109/ACCESS.2022.3198656

    Article  Google Scholar 

  40. Fang, H.-L., Ross, P., & Corne, D. (1993).A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems. University of Edinburgh, Department of Artificial Intelligence.

    MATH  Google Scholar 

  41. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., & Chong, S. (2011). On the levy-walk nature of human mobility.IEEE/ACM Transactions on Networking,19(3), 630–643.

    Article MATH  Google Scholar 

  42. Huang, X., Wu, W., Hu, S., Li, M., Zhou, C., & Shen, X. S. (2024). Digital twin based user-centric resource management for multicast short video streaming.IEEE Journal of Selected Topics in Signal Processing, 18(1), 50–65.

    Article MATH  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

  1. Beijing National Research Center for Information Science and Technology (BNRist), Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China

    Umber Saleem, Tong Li & Yong Li

  2. School of Electronic Engineering, Dublin City University, Dublin, Ireland

    Sobia Jangsher

Authors
  1. Umber Saleem

    You can also search for this author inPubMed Google Scholar

  2. Sobia Jangsher

    You can also search for this author inPubMed Google Scholar

  3. Tong Li

    You can also search for this author inPubMed Google Scholar

  4. Yong Li

    You can also search for this author inPubMed Google Scholar

Contributions

US desgined, implemented and wrote the manuscript with support from Dr. SJ and Dr. TL. Dr. YL conceived the original idea and supervised the research. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence toTong Li.

Ethics declarations

Conflict of interest

The authors have no Conflict of interest to declare that are relevant to the content of this article.

Ethics approval

N/A

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp