Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

A hierarchical adaptive spatio-temporal data compression scheme for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

How to reduce the number of transmissions or prolong the lifetime of wireless sensor networks significantly has become a great challenge. Based on the spatio-temporal correlations of sensory data, in this paper, we propose a hierarchical adaptive spatio-temporal data compression (HASDC) scheme to address this issue. The proposed compression scheme explores the temporal correlation of original sensory data by employing the discrete cosine transform and adaptive threshold compression algorithm (ATCA). And then, the cluster head node explores the spatial correlation among the compressed temporal readings by utilizing discrete wavelet transform (DWT) and ATCA. The HASDC scheme obtains better recovery quality and compression ratio by combining data sorting, ATCA and spatio-temporal compression concept. At the same time, according to the correlation of sensory data and the adaptive threshold value, the HASDC scheme can adjust the compression ratio adaptively, thus it’s applicable to different physical scenarios. Finally, the simulation results confirm that the transformed coefficients are more concentrated than the ones without introducing DWT, and the proposed scheme outperforms other spatio-temporal schemes in terms of compression and recovery performances.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yang, X., Tao, X., Dutkiewicz, E., et al. (2013). Energy-efficient distributed data storage for wireless sensor networks based on compressed sensing and network coding.IEEE Transactions on Wireless Communications,12(10), 5087–5099.

    Article  Google Scholar 

  2. Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing.IEEE Transactions on Parallel and Distributed Systems,25(3), 806–815.

    Article  Google Scholar 

  3. Douak, F., Benzid, R., & Benoudijit, N. (2011). Color image compression algorithm based in the DCT transform combined to an adaptive block scanning.AEU-International Journal of Electronics and Communications,65(1), 16–26.

    Article  Google Scholar 

  4. Dang, T., Bulusu, N. & Feng, W. C. (2007). RIDA: A robust information driven data compression architecture for irregular wireless sensor networks. InProceedings of 4th European conference on wireless sensor networks (EWSN) (pp. 133–149).

  5. Nguyen, M. T., & Teague, K. A. (2015). Distributed DCT-based data compression in clustered wireless sensor networks. InProceedings of 11th international conference on the design of reliable communication networks (DRCN) (pp. 255–258).

  6. Chen, S., Liu, J., & Wu, M., et al. (2016). DCT-based adaptive data compression in wireless sensor networks. InProceedings of 25th international conference on computer communication and networks (ICCCN) (pp. 1–5).

  7. Chen, S., Liu, J., Wang, K., et al. (2016). Data sorting-based adaptive spatial compression in wireless sensor networks.KSII Transactions on Internet and Information Systems,10(8), 3641–3655.

    Google Scholar 

  8. Nabaee, M., & Labeau, F. (2014). Quantized network coding for correlated sources.EURASIP Journal on Wireless Communications and Networking,2014, 1–17.

    Article  Google Scholar 

  9. Wang, Y. C., Hsieh, Y. Y., & Tseng, Y. C. (2008). Compression and storage schemes in a sensor network with spatial and temporal coding techniques. InProceedings of IEEE 67th vehicular technology conference (VTC) (pp. 148–152).

  10. Kong, L., Xia, M., Liu, X., et al. (2014). Data loss and reconstruction in wireless sensor networks.IEEE Transactions on Parallel and Distributed Systems,25(11), 2818–2828.

    Article  Google Scholar 

  11. Lee, D., & Choi, J. (2015). Learning compressive sensing models for big spatio-temporal data. InProceedings of SIAM international conference on data mining (pp. 667–675).

  12. Gong, B., Cheng, P., Liu, N., et al. (2015). Spatiotemporal compressive network coding for energy-efficient distributed data storage in wireless sensor networks.IEEE Communications Letters,19(5), 803–806.

    Article  Google Scholar 

  13. Quan, L., Xiao, S., Xue, X., et al. (2016). Neighbor-aided spatio-temporal compressive data gathering in wireless sensor networks.IEEE Communications Letters,20(3), 578–581.

    Article  Google Scholar 

  14. Chen, S., Wu, M., Wang, K., et al. (2014). Compressive network coding for error control in wireless sensor networks.Wireless Networks,20(8), 2605–2615.

    Article  Google Scholar 

  15. Chen, S., Zhao, C., & Wu, M., et al. (2015). Cluster spatio-temporal compression design for wireless sensor networks. InProceedings of international conference on computer communication and networks (ICCCN) (pp. 1–6).

  16. Xu, X., Ansan, R., Khokhar, A., et al. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNs.ACM Transactions on Sensor Networks,11(3), 1–5.

    Article  Google Scholar 

  17. Gao, Z., Dai, L., Dai, W., et al. (2016). Structured compressive sensing-based spatial-temporal joint channel estimation for FDD massive MIMO.IEEE Transaction on Communications,64(2), 601–617.

    Article  Google Scholar 

  18. Chen, S., Zhao, C., Wu, M., et al. (2016). Compressive network coding for wireless sensor networks: Spatio-temporal coding and optimization design.Computer Networks,108, 345–356.

    Article  Google Scholar 

  19. Gonzalez, R., & Woods, R. (2008).Digital image processing (3rd ed.). Upper Saddle River, NJ: Prentice Hall Press.

    Google Scholar 

  20. Tedmori, R. S., & Al-Najdawi, N. (2014). Image cryptographic algorithm based on the Haar wavelet transform.Information Sciences,269(11), 21–34.

    Article MathSciNet MATH  Google Scholar 

  21. Krishnan, A. M., & Kumar, P. G. (2016). An effective clustering approach with data aggregation using multiple mobile sinks for heterogeneous WSN.Wireless Personal Communications,90(2), 423–434.

    Article  Google Scholar 

  22. Izadi, D., Abawajy, J., & Ghanavati, S. (2015). An alternative clustering scheme in WSN.IEEE Sensors Journal,15(7), 4148–4155.

    Article  Google Scholar 

  23. Astranchan, O. (2003). Bubble sort: an archaeological algorithmic analysis.ACM SIGCSE Bulletin,35(1), 1–5.

    Article  Google Scholar 

  24. Intel Lab Data.http://dB.csail.mit.edu/labdata/Labdata.html.

  25. Masoum, A., Meratnia, N., & Havinga, P. J. M. (2013). A distributed compressive sensing technique for data gathering in wireless sensor networks.Procedia Computer Science,21, 207–216.

    Article  Google Scholar 

  26. Wang, S., Ruby, R., Leung, V. C., et al. (2016). A low-complexity power allocation strategy to minimize sum-source-power for multi-user single-AF-relay networks.IEEE Transactions on Communications,64(8), 3275–3283.

    Article  Google Scholar 

  27. Wang, S., Ruby, R., Leung, V. C., et al. (2016). Energy-efficient power allocation for multi-user single-AF-relay underlay cognitive radio networks.Computer Networks,103, 115–128.

    Article  Google Scholar 

  28. Wang, K., Gao, H., Xu, X., et al. (2016). An energy-efficient reliable data transmission scheme for complex environmental monitoring in underwater acoustic sensor networks.IEEE Sensors Journal,16(11), 4051–4062.

    Article  Google Scholar 

  29. Chen, S., Wang, K., Zhao, C., et al. (2017). Accelerated distributed optimization design for reconstruction of big sensory data.IEEE Internet of Things Journal,. doi:10.1109/JIOT.2017.2709810.

    Google Scholar 

  30. Zhang, G., Li, X., Cui, M., et al. (2016). Signal and artificial noise beamforming for secure simultaneous wireless information and power transfer multiple-input multiple-output relaying systems.IET Communications,10(7), 796–804.

    Article  Google Scholar 

  31. Zhang, G., Li, Q., Zhang, Q., et al. (2015). Signal-to-interference-plus-noise ratio-based multi-relay beamforming for multi-user multiple-input multiple-output cognitive relay networks with interference from primary network.IET Communications,9(2), 227–238.

    Article  Google Scholar 

  32. Wang, K., Shao, Y., Shu, L., et al. (2015). LDPA: A local data processing architecture in ambient assisted living communications.IEEE Communications Magazine,53(1), 56–63.

    Article  Google Scholar 

  33. Wang, K., Shao, Y., Shu, L., et al. (2016). Mobile big data fault-tolerant processing for eHealth networks.IEEE Network,30(1), 1–7.

    Article  Google Scholar 

  34. Wang, K., Mi, J., & Xu, C., et al. (2016). Real-time load reduction in multimedia big data for mobile internet.ACM Transactions on Multimedia Computing, Communications and Applications,12(5s), 1–20.

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (Nos. 61572262, 61771258), the Six Talented Eminence Foundation of Jiangsu Province (No. XYDXXJS-044), the Natural Science Foundation of Jiangsu Province (No. BK20151507), the 1311 Talents Plan of NUPT, the Scientific Research Foundation of NUPT (No. NY217057) and the Natural Science Foundation for Colleges and Universities in Jiangsu Province (No. 16KJB520034).

Author information

Authors and Affiliations

  1. Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing, China

    Siguang Chen, Jincheng Liu, Kun Wang & Meng Wu

Authors
  1. Siguang Chen

    You can also search for this author inPubMed Google Scholar

  2. Jincheng Liu

    You can also search for this author inPubMed Google Scholar

  3. Kun Wang

    You can also search for this author inPubMed Google Scholar

  4. Meng Wu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSiguang Chen.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp