276Accesses
Abstract
Packet delay control in mobile ad hoc networks (MANETs) is critical to support delay-sensitive applications in such networks. By combining erasure coding and packet redundancy techniques, this paper proposes a general two-hop relay algorithm 2HR-\((x,\tau ,f)\) for a flexible control of packet delivery delay in MANETs, where a group ofx packets in source node are first encoded into\(x\cdot \tau\) encoded packets based erasure coding, and each encoded packet is then delivered to at mostf distinct relay nodes (f-cast) that will help to forward the encoded packet to destination node. To understand the delay performance in a 2HR-\((x,\tau ,f)\) MANET, we then develop a discrete time multi-dimensional Markov chain model to depict the packet delivery process in the network, based on which closed-form results on mean and variance of packet delivery delay are further derived. Finally, extensive simulation and theoretical results are provided to illustrate the efficiency of our delay models as well as the capability of the 2HR-\((x,\tau ,f)\) algorithm in delay control.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.












Similar content being viewed by others
Notes
The packet delivery delay in MANETs is mainly dominated by node mobility, interference and medium contention [16,37]. Nowadays, computation power is very powerful, making coding/decoding to be processed very fast and thus allowing us to neglect the time cost of coding/decoding process in our delay analysis [7,10,16].
In this paper, these network functions, like i.i.d. node mobility, transmission-group based scheduling scheme and packet delivery process of our algorithm, can be easily implemented by a customized C++ simulator (now publicly available at [39]) without going through a complicated network simulator (like NS2 and OPNET).
References
Andrews, J., Shakkottai, S., Heath, R., Jindal, N., Haenggi, M., Berry, R., et al. (2008). Rethinking information theory for mobile ad hoc networks.IEEE Communications Magazine,46(12), 94–101.
Wang, Z., Chen, Y., & Li, C. (2012). Corman: A novel cooperative opportunistic routing scheme in mobile ad hoc networks.IEEE Journal on Selected Areas in Communications,30(2), 289–296.
Goldsmith, A., Effros, M., Koetter, R., Medard, M., Ozdaglar, A., & Zheng, L. (2011). Beyond shannon: The quest for fundamental performance limits of wireless ad hoc networks.IEEE Communications Magazine,49(5), 195–205.
Kannhavong, B., Nakayama, H., Nemoto, Y., Kato, N., & Jamalipour, A. (2007). A survey of routing attacks in mobile ad hoc networks.IEEE Wireless Communications Magazine,14(5), 85–91.
Kannhavong, B., Nakayama, H., Kato, N., Jamalipour, A., & Nemoto, Y. (2007). A study of a routing attack in olsr-based mobile ad hoc networks.International Journal of Communication Systems,20(11), 1245–1261.
Zhou, Y., Zhang, Y., Xie, Y., Zhang, H., Yang, L. T., & Min, G. (2014). TransCom: A virtual disk-based cloud computing platform for heterogeneous services.IEEE Transactions on Network and Service Management,11(1), 46–59.
Wang, Y., Jain, S., Martonosi, M., & Fall, K. (2005). Erasure-coding based routing for opportunistic networks. In:Proceedings of ACM SIGCOMM WDTN.
Liu, J., Jiang, X., Nishiyama, H., & Kato, N. (2011). Delay and capacity in ad hoc mobile networks with f-cast relay algorithms.IEEE Transactions on Wireless Communications,10(8), 2738–2751.
Neely, M. J., & Modiano, E. (2005). Capacity and delay tradeoffs for ad-hoc mobile networks.IEEE Transactions on Information Theory,51(6), 1917–1936.
Hanbali, A. A., Kherani, A. A., & Nain, P. (2007). Simple models for the performance evaluation of a class of two-hop relay protocols. InProceedings of IFIP networking.
Grossglauser, M., & Tse, D. N. (2001). Mobility increases the capacity of ad hoc wireless networks. InProceedings of INFOCOM.
Liao, Y., Tan, K., Zhang, Z., & Gao, L. (2006). Estimation based erasure coding routing in delay tolerant networks. InProceedings of IWCMC.
Tsapeli, F., & Tsaoussidis, V. (2012). Routing for opportunistic networks based on probabilistic erasure coding. InProceedings of WWIC.
Liu, J., Jiang, X., Nishiyama, H., & Kato, N. (2011). Performance modeling for two-hop relay with erasure coding in manets. InProceedings of globecom.
Chen, L., Yu, C., Sun, T., Chen, Y., & Chu, H. (2006). hybrid routing approach for opportunistic networks. InProceedings of ACM SIGCOMM workshop on challenged networks.
Kong, Z., Yeh, E., & Soljanin, E. (2012). Coding improves the throughput-delay tradeoff in mobile wireless networks.IEEE Transactions on Information Theory,58(11), 6894–6906.
Altman, E., & Pellegrini, F. D. (2011). Forward correction and fountain codes in delay-tolerant networks.IEEE/ACM Transactions on Networking,19(1), 1–13.
Altman, E., Sassatelli, L., & Pellegrini, F. D. (2013). Dynamic control of coding for progressive packet arrivals in dtns.IEEE Transactions on Wireless Communications,12(2), 725–735.
Sharma, G., & Mazumdar, R. (2004). On achievable delay/capacity trade-offs in mobile ad hoc networks. InProceedings of WiOpt.
Sharma, G., Mazumdar, R., & Shroff, N. (2007). Delay and capacity tradeoffs in mobile ad hoc networks: A global perspectives.IEEE/ACM Transactions on Networking,15(5), 981–992.
Groenevelt, R., Nain, P., & Koole, G. (2005). The message delay in mobile ad hoc networks.Performance Evaluation,62(1–4), 210–228.
Panagakis, A., Vaios, A., & Stavrakakis, I. (2007). Study of two-hop message spreading in dtns. InProceedings of WiOpt.
Hanbali, A. A., Nain, P., & Altman, E. (2008). Performance of ad hoc networks with two-hop relay routing and limited packet lifetime-extended version.Performance Evaluation,65(6–7), 463–483.
Liu, J., Jiang, X., Nishiyama, H., & Kato, N. (2012). Generalized two-hop relay for flexible delay control in manets.IEEE/ACM Transactions on Networking,20(6), 1950–1963.
Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. InProceedings of ACM SIGCOMM workshop.
Bulut, E., Wang, Z., & Szymanski, B. K. (2010). Cost effective multi-period spraying for routing in delay tolerant networks.IEEE/ACM Transactions on Networking,18(5), 1530–1543.
Li, P., Fang, Y., Li, J., & Huang, X. (2012). Smooth trade-offs between throughput and delay in mobile ad hoc networks.IEEE Transactions on Mobile Computing,11(3), 427–438.
Urgaonkar, R., & Neely, M. J. (2011). Network capacity region and minimum energy function for a delay-tolerant mobile ad hoc network.IEEE/ACM Transactions on Networking,19(4), 1137–1150.
Ying, L., Yang, S., & Srikant, R. (2008). Optimal delay-throughput trade-offs in mobile ad hoc networks.IEEE Transactions on Information Theory,54(9), 4119–4143.
Liu, J., Jiang, X., Nishiyama, H., & Kato, N. (2012). Exact throughput capacity under power control in mobile ad hoc networks. InProceedings of INFOCOM.
Zhang, C., Fang, Y., & Zhu, X. (2009). Throughput-delay tradeoffs in large scale manets with network coding. InProceedings of INFOCOM.
Ciullo, D., Martina, V., Garetto, M., & Leonardi, E. (2010). Impact of correlated mobility on delay-throughput performance in mobile ad-hoc networks. InProceedings of INFOCOM.
Garetto, M., Giaccone, P., & Leonardi, E. (2009). Capacity scaling in ad hoc networks with heterogeneous mobile nodes:the subcritical regime.IEEE/ACM Transactions on Networking,17(6), 1888–1901.
Gupta, P., & Kumar, P. (2000). The capacity of wireless networks.IEEE Transactions on Information Theory,46(2), 388–404.
Li, P., Fang, Y., & Li, J. (2010). Throughput, delay, and mobility in wireless ad hoc networks. InProceedings of INFOCOM.
Rizzo, L. (1997). Effective erasure codes for reliable computer communication protocols.Computer Communication Review,27(2), 24–36.
Garetto, M., & Leonardi, E. (2010). Restricted mobility improves delay-throughput trade-offs in mobile ad-hoc networks.IEEE Transactions on Information Theory,56(10), 5016–5029.
Grinstead, C. M., & Snell, J. L. (1997).Introduction to Probability (2nd ed.). Providence: American Mathematical Society.
C++ simulator for the 2hr-(x;\(\tau\); f) manets [Online].http://wlcresearch.blogspot.jp.
Gamal, A. E., Mammen, J., Prabhakar, B., & Shah, D. (2006). Optimal throughput-delay scaling in wireless networks-part I: The fluid model.IEEE Transactions on Information Theory,52(6), 2568–2592.
Zhou, S., & Ying, L. (2010). On delay constrained multicast capacity of largescale mobile ad-hoc networks. InProceedings of INFOCOM.
Boche, H., Naik, S., & Schubert, M. (2011). Pareto boundary of utility sets for multiuser wireless systems.IEEE/ACM Transactions on Networking,19(2), 589–601.
Acknowledgments
This work is supported in part by the Significant Natural Science Foundation of the Education Department of Anhui Province under Grant No. KJ2011ZD06, the Key Program of Natural Science Foundation of Chuzhou University under Grant No. 2012kj002Z and the Chuzhou University Excellent Young Talents Fund Project under Grant No. 2013RC005.
Author information
Authors and Affiliations
School of Systems Information Science, Future University Hakodate, Hakodate, 041-8655, Japan
Bin Yang & Xiaohong Jiang
School of Computer and Information Engineering, Chuzhou University, Chuzhou, 239000, China
Bin Yang
School of Information Science, Nara Institute of Science and Technology, Nara, 630-0192, Japan
Juntao Gao
Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China
Yuezhi Zhou
- Bin Yang
You can also search for this author inPubMed Google Scholar
- Juntao Gao
You can also search for this author inPubMed Google Scholar
- Yuezhi Zhou
You can also search for this author inPubMed Google Scholar
- Xiaohong Jiang
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toBin Yang.
Rights and permissions
About this article
Cite this article
Yang, B., Gao, J., Zhou, Y.et al. Delay control in MANETs with erasure coding andf-cast relay.Wireless Netw20, 2617–2631 (2014). https://doi.org/10.1007/s11276-014-0767-1
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative