1611Accesses
10Citations
3Altmetric
Abstract
Blind image deblurring (BID) has been extensively studied in computer vision and adjacent fields. Modern methods for BID can be grouped into two categories: single-instance methods that deal with individual instances using statistical inference and numerical optimization, and data-driven methods that train deep-learning models to deblur future instances directly. Data-driven methods can be free from the difficulty in deriving accurate blur models, but are fundamentally limited by the diversity and quality of the training data—collecting sufficiently expressive and realistic training data is a standing challenge. In this paper, we focus on single-instance methods that remain competitive and indispensable. However, most such methods do not prescribe how to deal with unknown kernel size and substantial noise, precluding practical deployment. Indeed, we show that several state-of-the-art (SOTA) single-instance methods are unstable when the kernel size is overspecified, and/or the noise level is high. On the positive side, we propose a practical BID method that is stable against both, the first of its kind. Our method builds on the recent ideas of solving inverse problems by integrating physical models and structured deep neural networks, without extra training data. We introduce several crucial modifications to achieve the desired stability. Extensive empirical tests on standard synthetic datasets, as well as real-worldNTIRE2020 andRealBlur datasets, show the superior effectiveness and practicality of our BID method compared to SOTA single-instance as well as data-driven methods. The code of our method is available athttps://github.com/sun-umn/Blind-Image-Deblurring.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.




































Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
Part of the code and datasets used during the current study, necessary to interpret, replicate and build upon the findings reported in the article, are available in the Github repositoryhttps://github.com/sun-umn/Blind-Image-Deblurring
Notes
Indeed, by Young’s convolution inequality and the fact\({\Vert {\varvec{k}} \Vert _1 = 1}\),
.
In particular, if they form a measure-zero set.
The result in Eq. (11) assumes a circular convolution model:\(\varvec{y} = \varvec{a} \circledast \varvec{z}\), but it is well known that the linear convolution can be written as circular convolution by appropriate zero-padding to the two convolving components.
We note in passing that the reason we do not use FBC directly is that it may be misleading: the correspondence ratio as they define it can be larger than 1, so in principle the average approaching 1 does not imply that recovery is good. When checking their code (https://github.com/shizenglin/Measure-and-Control-Spectral-Bias), we find that they actually truncate values greater than 1, which potentially make the metric more misleading.
The existing synthetic BID datasets are too small to support training data-driven methods.
LAI16 has 4 trajectories to synthesize non-uniform motion blur also, which we do not consider in this paper. Moreover, it also includes 100 real-world blurry images without groundtruth kernels.
Available at (registration needed to download the dataset):https://competitions.codalab.org/competitions/22233#learn_the_details. We suspect that this is a superset of the REDS (REalistic and Dynamic Scenes) dataset (available athttps://seungjunnah.github.io/Datasets/reds.html), at least with the same generation procedure as that of REDS.
Available at:http://cg.postech.ac.kr/research/realblur/
NTIRE2020 is developed for data-driven approaches that require an extensive training set.
Code available at:http://cs.brown.edu/~lbsun/deblur2013/deblur2013iccp.html
Code available at:https://jspan.github.io/projects/dark-channel-deblur/index.html
Code available at:https://www.dropbox.com/s/qmxkkwgnmuwrfoj/code_iccv2017_outlier.zip?dl=0
Code available at:https://github.com/lisiyaoATbnu/low_rank_kernel
Code available at:https://github.com/csdwren/SelfDeblur
InDONG17 the loss consists in applying\(h(z) = z^2/2 - \log {(a+e^{bz^2})}/(2b)\) element-wise to\(\varvec{y} - {\varvec{k}} *{\varvec{x}}\), where\(a, b > 0\) and so that\(h(z) \le 0\). Note that\(h(z) \sim O(z^2)\) as\(z \rightarrow 0\), andh(z) approaches the constant 0 whenz is large.
SRN is available at:https://github.com/jiangsutx/SRN-Deblur;DeblurGAN-v2 is available at:https://github.com/VITA-Group/DeblurGANv2;ZHANG20 is available at:https://github.com/HDCVLab/Deblurring-by-Realistic-Blurring.
References
Ahmed, A., Recht, B., & Romberg, J. (2014). Blind deconvolution using convex programming.IEEE Transactions on Information Theory,60(3), 1711–1732.https://doi.org/10.1109/tit.2013.2294644
Aljadaany, R., Pal, D. K., & Savvides, M. (2019). Douglas-rachford networks: Learning both the image prior and data fidelity terms for blind image deconvolution. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE.https://doi.org/10.1109/cvpr.2019.01048
Asim, M., Shamshad, F., & Ahmed, A. (2020). Blind image deconvolution using deep generative priors.IEEE Transactions on Computational Imaging,6, 1493–1506.https://doi.org/10.1109/tci.2020.3032671
Benichoux, A., Vincent, E., & Gribonval, R. (2013). A fundamental pitfall in blind deconvolution with sparse and shift-invariant priors. In: IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE .https://doi.org/10.1109/icassp.2013.6638838
Bostan, E., Heckel, R., Chen, M., Kellman, M., & Waller, L. (2020). Deep phase decoder: Self-calibrating phase microscopy with an untrained deep neural network.Optica,7(6), 559–562.
Cabrelli, C. A. (1985). Minimum entropy deconvolution and simplicity: A noniterative algorithm.Geophysics,50(3), 394–413.https://doi.org/10.1190/1.1441919
Chan, T., & Wong, C. K. (1998). Total variation blind deconvolution.IEEE Transactions on Image Processing,7(3), 370–375.https://doi.org/10.1109/83.661187
Chen, L., Fang, F., Wang, T., Zhang, G.(2019). Blind image deblurring with local maximum gradient prior. In: IEEE Conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2019.00184
Chen, L., Fang, F., Zhang, J., Liu, J., & Zhang, G. (2020). OID: Outlier identifying and discarding in blind image deblurring. In: European Conference on Computer Vision (ECCV), pp. 598–613. Springer International Publishing.https://doi.org/10.1007/978-3-030-58595-2_36
Chen, L., Zhang, J., Lin, S., Fang, F., & Ren, J. S. (2021). Blind deblurring for saturated images. In: IEEE Conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr46437.2021.00624
Cheung, S. C., Shin, J. Y., Lau, Y., Chen, Z., Sun, J., Zhang, Y., Müller, M. A., Eremin, I. M., Wright, J. N., & Pasupathy, A. N.(2020). Dictionary learning in fourier-transform scanning tunneling spectroscopy. Nature Communications11(1):1081.https://doi.org/10.1038/s41467-020-14633-1
Chi, Y. (2016). Guaranteed blind sparse spikes deconvolution via lifting and convex optimization.IEEE Journal of Selected Topics in Signal Processing,10(4), 782–794.https://doi.org/10.1109/jstsp.2016.2543462
Cho, S., & Lee, S. (2009). Fast motion deblurring. In: ACM Trans. Graph. ACM Press .https://doi.org/10.1145/1661412.1618491
Cho, S., Lee, S.(2017). Convergence analysis of MAP based blur kernel estimation. In: IEEE International Conference on Computer Vision (ICCV). IEEEhttps://doi.org/10.1109/iccv.2017.515
Choudhary, S., & Mitra, U. (2014). Sparse blind deconvolution: What cannot be done. InIEEE international symposium on information theory. IEEE .https://doi.org/10.1109/isit.2014.6875385
Choudhary, S., & Mitra, U. (2018). On the properties of the rank-two null space of nonsparse and canonical-sparse blind deconvolution.IEEE Transactions on Signal Processing,66(14), 3696–3709.https://doi.org/10.1109/tsp.2018.2815014
Darestani, M. Z., & Heckel, R. (2021). Accelerated MRI with un-trained neural networks.IEEE Transactions on Computational Imaging,7, 724–733.https://doi.org/10.1109/tci.2021.3097596
Ding, Z., & Luo, Z. Q. (2000). A fast linear programming algorithm for blind equalization.IEEE Transactions on Communications,48(9), 1432–1436.https://doi.org/10.1109/26.870004
Dong, J., Pan, J., Su, Z., & Yang, M. H.(2017). Blind image deblurring with outlier handling. InIEEE international conference on computer vision (ICCV). IEEE .https://doi.org/10.1109/iccv.2017.271
Donoho, D. (1981). ON minimum entropy deconvolution. InApplied time series analysis II, pp. 565–608. Elsevier .https://doi.org/10.1016/b978-0-12-256420-8.50024-1
Ekanadham, C., Tranchina, D., Simoncelli, E.(2011). A blind sparse deconvolution method for neural spike identification. InAdvances in neural information processing systems
Fang, L., Liu, H., Wu, F., Sun, X., & Li, H. (2014). Separable kernel for image deblurring. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2014.369
Gandelsman, Y., Shocher, A., & Irani, M. (2019). “double-DIP”: Unsupervised image decomposition via coupled deep-image-priors. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE (2019).https://doi.org/10.1109/cvpr.2019.01128
Gong, D., Tan, M., Zhang, Y., van den Hengel, A., & Shi, Q. (2017). Self-paced kernel estimation for robust blind image deblurring. InIEEE International conference on computer vision (ICCV). IEEE .https://doi.org/10.1109/iccv.2017.184
Gong, D., Tan, M., Zhang, Y., Hengel, A. V. D., & Shi, Q. (2016). Blind image deconvolution by automatic gradient activation. InIEEE Conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2016.202
Heckel, R., Hand, P. (2019). Deep decoder: Concise image representations from untrained non-convolutional networks. InInternational conference on learning representations
Heckel, R., & Soltanolkotabi, M. (2019). Denoising and regularization via exploiting the structural bias of convolutional generators. arXiv preprintarXiv:1910.14634
Heckel, R., & Soltanolkotabi, M. (2020). Compressive sensing with un-trained neural networks: Gradient descent finds the smoothest approximation.arXiv:2005.03991
Hendrycks, D., & Dietterich, T. (2019). Benchmarking neural network robustness to common corruptions and perturbations. InInternational conference on learning representations.https://openreview.net/forum?id=HJz6tiCqYm
Huber, P. J. (1964). Robust estimation of a location parameter.The Annals of Mathematical Statistics,35(1), 73–101.https://doi.org/10.1214/aoms/1177703732
Hurley, N., & Rickard, S. (2009). Comparing measures of sparsity.IEEE Transactions on Information Theory,55(10), 4723–4741.https://doi.org/10.1109/tit.2009.2027527
Jin, M., Roth, S., & Favaro, P. (2018). Normalized blind deconvolution. InEuropean conference on computer vision (ECCV), pp. 694–711. Springer International Publishing .https://doi.org/10.1007/978-3-030-01234-2_41
Joshi, N., Szeliski, R., Kriegman, D.J.(2008). PSF estimation using sharp edge prediction. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2008.4587834
Joshi, N., Zitnick, C.L., Szeliski, R., & Kriegman, D. J. (2009). Image deblurring and denoising using color priors. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2009.5206802
Kech, M., & Krahmer, F. (2017). Optimal injectivity conditions for bilinear inverse problems with applications to identifiability of deconvolution problems.SIAM Journal on Applied Algebra and Geometry,1(1), 20–37.https://doi.org/10.1137/16m1067469
Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., & Harmeling, S.(2012). Recording and playback of camera shake: Benchmarking blind deconvolution with a real-world database. InEuropean conference on computer vision (ECCV), pp. 27–40. Springer Berlin Heidelberg .https://doi.org/10.1007/978-3-642-33786-4_3
Koh, J., Lee, J., & Yoon, S. (2021). Single-image deblurring with neural networks: A comparative survey.Computer Vision and Image Understanding,203, 103134.https://doi.org/10.1016/j.cviu.2020.103134
Komodakis, N., & Paragios, N. (2013). MRF-based blind image deconvolution. InAsian conference on computer vision (ACCV), pp. 361–374. Springer Berlin Heidelberg .https://doi.org/10.1007/978-3-642-37431-9_28
Krishnan, D., & Fergus, R.(2009) Fast image deconvolution using hyper-laplacian priors. InAdvances in Neural Information Processing Systems.https://proceedings.neurips.cc/paper/2009/file/3dd48ab31d016ffcbf3314df2b3cb9ce-Paper.pdf
Krishnan, D., Tay, T., & Fergus, R. (2011). Blind deconvolution using a normalized sparsity measure. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2011.5995521
Kundur, D., & Hatzinakos, D. (1996). Blind image deconvolution.IEEE Signal Processing Magazine,13(3), 43–64.https://doi.org/10.1109/79.489268
Kuo, H. W., Zhang, Y., Lau, Y., & Wright, J. (2020). Geometry and symmetry in short-and-sparse deconvolution.SIAM Journal on Mathematics of Data Science,2(1), 216–245.https://doi.org/10.1137/19m1237569
Kupyn, O., Martyniuk, T., Wu, J., & Wang, Z. (2019). Deblurgan-v2: Deblurring (orders-of-magnitude) faster and better. InProceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887
Lai, W.S., Huang, J.B., Hu, Z., Ahuja, N., Yang, M.H.(2016). A comparative study for single image blind deblurring. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2016.188
Lawrence, H., Bramherzig, D., Li, H., Eickenberg, M., & Gabrié, M. (2020). Phase retrieval with holography and untrained priors: Tackling the challenges of low-photon nanoscale imaging. arXiv preprintarXiv:2012.07386
Levin, A., Weiss, Y., Durand, F., & Freeman, W. T. (2011). Understanding blind deconvolution algorithms.IEEE Transactionson Pattern Analysis and Machine Intelligence,33(12), 2354–2367.https://doi.org/10.1109/tpami.2011.148
Lewicki, M. S. (1998). A review of methods for spike sorting: The detection and classification of neural action potentials.Network: Computation in Neural Systems,9(4), R53–R78.https://doi.org/10.1088/0954-898x_9_4_001
Li, L., Pan, J., Lai, W. S., Gao, C., Sang, N., Yang, M. H. (2018). Learning a discriminative prior for blind image deblurring. In2018 IEEE/CVF conference on computer vision and pattern recognition. IEEE .https://doi.org/10.1109/cvpr.2018.00692
Li, T., Wang, H., Zhuang, Z., & Sun, J. (2023). Deep random projector: Accelerated deep image prior. InProceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), pp. 18176–18185.
Li, T., Zhuang, Z., Liang, H., Peng, L., Wang, H., & Sun, J. (2021). Self-validation: Early stopping for single-instance deep generative priors. InBritish Machine Vision Conference (BMVC).
Li, X., Ling, S., Strohmer, T., & Wei, K. (2019). Rapid, robust, and reliable blind deconvolution via nonconvex optimization.Applied and Computational Harmonic Analysis,47(3), 893–934.https://doi.org/10.1016/j.acha.2018.01.001
Li, Y., Lee, K., & Bresler, Y.(2015). A unified framework for identifiability analysis in bilinear inverse problems with applications to subspace and sparsity models.arXiv:1501.06120
Li, Y., Lee, K., & Bresler, Y. (2017). Identifiability and stability in blind deconvolution under minimal assumptions.IEEE Transactions on Information Theory,63(7), 4619–4633.https://doi.org/10.1109/tit.2017.2689779
Li, Y., Tofighi, M., Geng, J., Monga, V., & Eldar, Y. C. (2019). Deep algorithm unrolling for blind image deblurring.arXiv:1902.03493
Liu, Y., Dong, W., Gong, D., Zhang, L., & Shi, Q. (2018). Deblurring natural image using super-gaussian fields. InEuropean conference on computer vision (ECCV), pp. 467–484. Springer International Publishing .https://doi.org/10.1007/978-3-030-01246-5_28
Ma, X., Hill, P., & Achim, A. (2021). Unsupervised image fusion using deep image priors.arXiv:2110.09490
Michaeli, T., & Irani, M. (2014). Blind deblurring using internal patch recurrence. InEuropean conference on computer vision (ECCV), pp. 783–798. Springer International Publishing .https://doi.org/10.1007/978-3-319-10578-9_51
Michelashvili, M., & Wolf, L. (2019). Speech denoising by accumulating per-frequency modeling fluctuations.arXiv:1904.07612
Nah, S., Baik, S., Hong, S., Moon, G., Son, S., Timofte, R., & Lee, K. M. (2019). NTIRE 2019 challenge on video deblurring and super-resolution: Dataset and study. In2019 IEEE/CVF conference on computer vision and pattern recognition workshops (CVPRW). IEEE .https://doi.org/10.1109/cvprw.2019.00251
Nah, S., Kim, T. H., & Lee, K. M.(2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2017.35
Nah, S., Son, S., Lee, S., Timofte, R., & Lee, K. M. (2021). Ntire 2021 challenge on image deblurring.arXiv:2104.14854
Nah, S., Son, S., Timofte, R., & Lee, K. M. (2020). NTIRE 2020 challenge on image and video deblurring.arXiv:2005.01244
Ongie, G., Jalal, A., Metzler, C. A., Baraniuk, R. G., Dimakis, A. G., & Willett, R. (2020). Deep learning techniques for inverse problems in imaging.IEEE Journal on Selected Areas in Information Theory,1(1), 39–56.https://doi.org/10.1109/jsait.2020.2991563
Pan, J., Dong, J., Liu, Y., Zhang, J., Ren, J., Tang, J., Tai, Y. W., & Yang, M. H. (2021). Physics-based generative adversarial models for image restoration and beyond.IEEE Transactions on Pattern Analysis and Machine Intelligence,43(7), 2449–2462.https://doi.org/10.1109/tpami.2020.2969348
Pan, J., Hu, Z., Su, Z., Yang, M. H. (2014). Deblurring text images via l0-regularized intensity and gradient prior. InIEEE Conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2014.371
Pan, J., Lin, Z., Su, Z., & Yang, M. H. (2016). Robust kernel estimation with outliers handling for image deblurring. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2016.306
Pan, J., Sun, D., Pfister, H., & Yang, M. H. (2016). Blind image deblurring using dark channel prior. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE.https://doi.org/10.1109/cvpr.2016.180
Perrone, D., Favaro, P.(2014). Total variation blind deconvolution: The devil is in the details. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2014.372
Qayyum, A., Ilahi, I., Shamshad, F., Boussaid, F., Bennamoun, M., & Qadir, J. (2021). Untrained neural network priors for inverse imaging problems: A survey. TechRxiv .https://doi.org/10.36227/techrxiv.14208215
Ravula, S., & Dimakis, A. G. (2019). One-dimensional deep image prior for time series inverse problems.arXiv:1904.08594
Ren, D., Zhang, K., Wang, Q., Hu, Q., & Zuo, W. (2020). Neural blind deconvolution using deep priors. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE.https://doi.org/10.1109/cvpr42600.2020.00340
Rim, J., Lee, H., Won, J., & Cho, S. (2020). Real-world blur dataset for learning and benchmarking deblurring algorithms. InEuropean conference on computer vision (ECCV), pp. 184–201. Springer International Publishing.https://doi.org/10.1007/978-3-030-58595-2_12
Schuler, C. J., Hirsch, M., Harmeling, S., & Scholkopf, B. (2016). Learning to deblur.IEEE Transactions on Pattern Analysis and Machine Intelligence,38(7), 1439–1451.https://doi.org/10.1109/tpami.2015.2481418
Sheikh, H., & Bovik, A. (2006). Image information and visual quality.IEEE Transactions on Image Processing,15(2), 430–444.https://doi.org/10.1109/tip.2005.859378
Shi, Z., Mettes, P., Maji, S., & Snoek, C. G. M. (2022). On measuring and controlling the spectral bias of the deep image prior.International Journal of Computer Vision,130(4), 885–908.https://doi.org/10.1007/s11263-021-01572-7
Si-Yao, L., Ren, D., & Yin, Q. (2019). Understanding kernel size in blind deconvolution. InIEEE winter conference on applications of computer vision (WACV). IEEE.https://doi.org/10.1109/wacv.2019.00224
Sitzmann, V., Martel, J., Bergman, A., Lindell, D., & Wetzstein, G. (2020). Implicit neural representations with periodic activation functions.Advances in Neural Information Processing Systems,33, 7462–7473.
Sun, L., Cho, S., Wang, J., & Hays, J. (2013). Edge-based blur kernel estimation using patch priors. InIEEE international conference on computational photography (ICCP). IEEE.https://doi.org/10.1109/iccphot.2013.6528301
Sun, Q., & Donoho, D. (2021). Convex sparse blind deconvolution.arXiv:2106.07053
Szeliski, R. (2021).Computer vision: Algorithms and applications (2nd ed.). London: Springer.
Tai, Y.W., & Lin, S. (2012). Motion-aware noise filtering for deblurring of noisy and blurry images. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2012.6247653
Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J., & Ng, R.(2020). Fourier features let networks learn high frequency functions in low dimensional domains. InAdvances in neural information processing systems.
Tao, X., Gao, H., Shen, X., Wang, J., & Jia, J. (2018). Scale-recurrent network for deep image deblurring. InProceedings of the IEEE conference on computer vision and pattern recognition, pp. 8174–8182.
Tayal, K., Manekar, R., Zhuang, Z., Yang, D., Kumar, V., Hofmann, F., & Sun, J. (2021). Phase retrieval using single-instance deep generative prior. InOSA optical sensors and sensing congress 2021 (AIS, FTS, HISE, SENSORS, ES). OSA .https://doi.org/10.1364/ais.2021.jw2a.37
Tran, P., Tran, A., Phung, Q., & Hoai, M. (2021). Explore image deblurring via encoded blur kernel space. InProceedings of the IEEE conference on computer vision and pattern recognition (CVPR).https://doi.org/10.1109/CVPR46437.2021.01178
Ulyanov, D., Vedaldi, A., & Lempitsky, V. (2020). Deep image prior.International Journal of Computer Vision,128(7), 1867–1888.https://doi.org/10.1007/s11263-020-01303-4
Vasu, S.(2021). Image and video deblurring: A curated list of resources for image and video deblurring.https://github.com/subeeshvasu/Awesome-Deblurring. Accessed on Dec 12 2021
Vembu, S., Verdu, S., Kennedy, R., & Sethares, W. (1994). Convex cost functions in blind equalization.IEEE Transactions on Signal Processing,42(8), 1952–1960.https://doi.org/10.1109/78.301833
Wang, H., Li, T., Zhuang, Z., Chen, T., Liang, H., & Sun, J. (2021). Early stopping for deep image prior.arXiv:2112.06074
Wang, Z., Wang, Z., Li, Q., & Bilen, H. (2019). Image deconvolution with deep image and kernel priors. In2019 IEEE/CVF international conference on computer vision workshop (ICCVW). IEEE .https://doi.org/10.1109/iccvw.2019.00127
Wiggins, R. A. (1978). Minimum entropy deconvolution.Geoexploration,16(1–2), 21–35.https://doi.org/10.1016/0016-7142(78)90005-4
Williams, F., Schneider, T., Silva, C., Zorin, D., Bruna, J., & Panozzo, D. (2019). Deep geometric prior for surface reconstruction.arXiv:1811.10943
Wipf, D., & Zhang, H. (2014). Revisiting bayesian blind deconvolution.Journal of Machine Learning Research,15(111), 3775–3814.
Xu, L., & Jia, J. (2010). Two-phase kernel estimation for robust motion deblurring. InEuropean Conference on Computer Vision, pp. 157–170. Springer Berlin Heidelberg .https://doi.org/10.1007/978-3-642-15549-9_12
Xu, L., Zheng, S., & Jia, J.(2013). Unnatural l0 sparse representation for natural image deblurring. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE.https://doi.org/10.1109/cvpr.2013.147
Yan, Y., Ren, W., Guo, Y., Wang, R., & Cao, X. (2017). Image deblurring via extreme channels prior. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2017.738
Yang, D., Zhuang, Z., Phillips, N.W., KaySong, Zdora, M.C., Harder, R., Cha, W., Liu, W., Barmherzig, D.A., Sun, J., & Hofmann, F. (2022). Application of single-instance deep generative priors for reconstruction of highly strained gold microcrystals in bragg coherent x-ray diffraction. In preparation 25
Yang, L., & Ji, H. (2019). A variational EM framework with adaptive edge selection for blind motion deblurring. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2019.01041
Zhang, K., Luo, W., Zhong, Y., Ma, L., Stenger, B., Liu, W., & Li, H. (2020). Deblurring by realistic blurring. InProceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2737–2746.
Zhang, K., Ren, W., Luo, W., Lai, W. S., Stenger, B., Yang, M. H., & Li, H. (2022). Deep image deblurring: A survey.International Journal of Computer Vision,130(9), 2103–2130.https://doi.org/10.1007/s11263-022-01633-5
Zhang, K., Zuo, W., & Zhang, L. (2019). Deep plug-and-play super-resolution for arbitrary blur kernels. In2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE.https://doi.org/10.1109/cvpr.2019.00177
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., & Wang, O.(2018). The unreasonable effectiveness of deep features as a perceptual metric 16.
Zhang, Y., Kuo, H. W., & Wright, J. (2020). Structured local optima in sparse blind deconvolution.IEEE Transactions on Information Theory,66(1), 419–452.https://doi.org/10.1109/tit.2019.2940657
Zhang, Y., Lau, Y., Kuo, H.W., Cheung, S., Pasupathy, A., & Wright, J. (2017). On the global geometry of sphere-constrained sparse blind deconvolution. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2017.466
Zhong, L., Cho, S., Metaxas, D., Paris, S., & Wang, J. (2013). Handling noise in single image deblurring using directional filters. InIEEE conference on computer vision and pattern recognition (CVPR). IEEE .https://doi.org/10.1109/cvpr.2013.85
Zhou, K. C., & Horstmeyer, R. (2020). Diffraction tomography with a deep image prior.Optics Express,28(9), 12872.https://doi.org/10.1364/oe.379200
Zhuang, Z., Yang, D., Hofmann, F., Barmherzig, D., & Sun, J. (2022). Practical phase retrieval using double deep image priors. arXiv preprintarXiv:2211.00799
Acknowledgements
Zhong Zhuang, Hengkang Wang, and Ju Sun are partially supported by NSF CMMI 2038403. We thank the anonymous reviewers and the associate editor for their insightful comments that have substantially helped us improve the presentation of this paper. We thank Le Peng and Wenjie Zhang for allowing us to use the e-scooter image of Fig. 1 that they captured. The authors acknowledge the Minnesota Supercomputing Institute (MSI) at the University of Minnesota for providing resources that contributed to the research results reported within this paper.
Author information
Authors and Affiliations
Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
Zhong Zhuang
Computer Science and Engineering, University of Minnesota, Minneapolis, USA
Taihui Li, Hengkang Wang & Ju Sun
- Zhong Zhuang
You can also search for this author inPubMed Google Scholar
- Taihui Li
You can also search for this author inPubMed Google Scholar
- Hengkang Wang
You can also search for this author inPubMed Google Scholar
- Ju Sun
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJu Sun.
Additional information
Communicated by Jiaya Jia.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
1.1List of common acronyms
See Table4
Contrast-enhanced version of Fig. 30 after histogram equalization
Contrast-enhanced version of Fig. 32 after histogram equalization
1.2Contrast-Enhanced Version of Figs. 30 and32
To reveal more details for images in Figs. 30 and32 that are about extremely dark scenes, we perform histogram equalization to enhance the contrast and display the results as follows (Figs.36,37).
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhuang, Z., Li, T., Wang, H.et al. Blind Image Deblurring with Unknown Kernel Size and Substantial Noise.Int J Comput Vis132, 319–348 (2024). https://doi.org/10.1007/s11263-023-01883-x
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative