- Sophia Novitzky1,
- Jamol Pender ORCID:orcid.org/0000-0002-5418-69182,
- Richard H. Rand3 &
- …
- Elizabeth Wesson4
290Accesses
13Citations
Abstract
Many service systems use technology to notify customers about their expected waiting times or queue lengths via delay announcements. However, in many cases, either the information might be delayed or customers might require time to travel to the queue of their choice, thus causing a lag in information. In this paper, we construct a neutral delay differential equation model for the queue length process and explore the use ofvelocity information in our delay announcement. Our results illustrate that using velocity information can have either a beneficial or detrimental impact on the system. Thus, it is important to understand how much velocity information a manager should use. In some parameter settings, we show that velocity information can eliminate oscillations created by delays in information. We derive a fixed point equation for determining the optimal amount of velocity information that should be used and find closed-form upper and lower bounds on its value. When the oscillations cannot be eliminated altogether, we identify the amount of velocity information that minimizes the amplitude of the oscillations. However, we also find that using too much velocity information can create oscillations in the queue lengths that would otherwise be stable.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.

































Similar content being viewed by others
References
Abboud, K., Zhuang, W.: Modeling and analysis for emergency messaging delay in vehicular ad hoc networks. In: GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, pp. 1–6 (2009).https://doi.org/10.1109/GLOCOM.2009.5425839
Armbruster, H., Ringhofer, C., Jo, T.C.: Continuous models for production flows. In: Proceedings of the American Control Conference, vol. 5, pp. 4589–4594 (2004). ISBN 0780383354.https://doi.org/10.1109/ACC.2004.182675
Armony, M., Maglaras, C.: On customer contact centers with a call-back option: customer decisions, routing rules, and system design. Oper. Res.52(2), 271–292 (2004)
Armony, M., Shimkin, N., Whitt, W.: The impact of delay announcements in many-server queues with abandonment. Oper. Res.57(1), 66–81 (2009)
Belhaq, M., Sah, S.I.: Fast parametrically excited van der Pol oscillator with time delay state feedback. Int. J. Non-Linear Mech.43(2), 124–130 (2008)
Bellena, A., Guglielmi, N.: Solving neutral delay differential equations with state-dependent delays. J. Comput. Appl. Math.229(2), 350–362 (2009)
Das, S.L., Chatterjee, A.: Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dyn.30, 323–335 (2002)
Daw, A., Pender, J.: New perspectives on the Erlang-A queue. Adv. Appl. Probab.51(1), 268–299 (2019)
Dong, J., Yom-Tov, E., Yom-Tov, G.B.: The impact of delay announcements on hospital network coordination and waiting times. Manag. Sci.65(5), 1969–1994 (2019)
Driver, R.D.: Existence and continuous dependence of solutions of a neutral functional-differential equation. Arch. Ration. Mech. Anal.19(2), 149–166 (1965).https://doi.org/10.1007/BF00282279
Eick, S.G., Massey, W.A., Whitt, W.:\(M_t\)/G/\(\infty \) queues with sinusoidal arrival rates. Manag. Sci.39(2), 241–252 (1993)
Eick, S.G., Massey, W.A., Whitt, W.: The physics of the\(M_t\)/G/\(\infty \) queue. Oper. Res.41(4), 731–742 (1993)
Fralix, B.H., Adan, I.J.B.F.: An infinite-server queue influenced by a semi-Markovian environment. Queueing Syst.61(1), 65–84 (2009)
Freund, D., Henderson, S., Shmoys, D.: Minimizing multimodular functions and allocating capacity in bike-sharing systems (2016). arXiv preprintarXiv:1611.09304
Guo, P., Zipkin, P.: Analysis and comparison of queues with different levels of delay information. Manag. Sci.53(6), 962–970 (2007)
Guo, P., Zipkin, P.: The impacts of customers’ delay-risk sensitivities on a queue with balking. Probab. Eng. Inf. Sci.23(3), 409–432 (2009)
Hale, J., Lunel, V.: Introduction to Functional Differential Equations. Springer Science, Berlin (1993)
Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)
Hausman, J., McFadden, D.: Specification tests for the multinomial logit model. Econometrica52(5), 1219–1240 (1984)
Helbing, D.: Improved fluid-dynamic model for vehicular traffic. Phys. Rev. E51, 3164–3169 (1995).https://doi.org/10.1103/PhysRevE.51.3164
Ibrahim, R., Armony, M., Bassamboo, A.: Does the past predict the future? The case of delay announcements in service systems. Manag. Sci.63(6), 1657–2048 (2017)
Iglehart, D.L.: Limiting diffusion approximations for the many server queue and the repairman problem. J. Appl. Probab.2(2), 429–441 (1965)
Jouini, O., Aksin, Z., Dallery, Y.: Call centers with delay information: models and insights. Manuf. Serv. Oper. Manag.13(4), 534–548 (2011)
Ko, Y.M., Pender, J.: Strong approximations for time-varying infinite-server queues with non-renewal arrival and service processes. Stochastic Models34(2), 186–206 (2018)
Lazarus, L., Davidow, M., Rand, R.: Periodically forced delay limit cycle oscillator. Int. J. Non-Linear Mech.94, 216–222 (2017)
Lipshutz, D., Williams, R.J.: Existence, uniqueness, and stability of slowly oscillating periodic solutions for delay differential equations with nonnegativity constraints. SIAM J. Math. Anal.47(6), 4467–4535 (2015)
McFadden, D.: Modelling the choice of residential location. Cowles Foundation Discussion Papers 477, Cowles Foundation for Research in Economics, Yale University (1977).https://EconPapers.repec.org/RePEc:cwl:cwldpp:477
Nirenberg, S., Daw, A., Pender, J.: The impact of queue length rounding and delayed app information on Disney world queues. In: Proceedings of the 2018 Winter Simulation Conference. Winter Simulation Conference (2018)
Novitzky, S., Pender, J., Rand, R.H., Wesson, E.: Nonlinear dynamics in queueing theory: Determining size of oscillations in queues with delay. SIAM J. Appl. Dyn. Syst.18, 279–311 (2018)
Pender, J., Rand, R.H., Wesson, E.: Queues with choice via delay differential equations. Int. J. Bifurc. Chaos27(4), 1730016 (2017)
Pender, J., Rand, R.H., Wesson, E.: An asymptotic analysis of queues with delayed information and time varying arrival rates. Nonlinear Dyn.91, 2411–2427 (2018)
Perkins, J., Kumar, P.: Optimal control of pull manufacturing systems. IEEE Trans. Autom. Control40(12), 2040–2051 (1995)
Raina, G., Wischik, D.: Buffer sizes for large multiplexers: TCP queueing theory and instability analysis. In: Next Generation Internet Networks, 2005. IEEE (2005)
Resnick, S., Samorodnitsky, G.: Activity periods of an infinite server queue and performance of certain heavy tailed fluid queues. Queueing Syst.33(1–3), 43–71 (1999)
Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Springer Science, Berlin (2011)
So, Y., Kuhfeld, W.: Multinomial logit models. In: SUGI 20 Conference Proceedings (1995)
Tao, S., Pender, J.: A stochastic analysis of bike sharing systems. arXiv preprintarXiv:1708.08052 (2017)
Train, K.: Discrete Choice Methods with Simulation. Cambridge University Press, Cambridge (2009)
Acknowledgements
Funding was provided by Division of Civil, Mechanical and Manufacturing Innovation (Grant No. 1751975).
Author information
Authors and Affiliations
Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY, 14853, USA
Sophia Novitzky
School of Operations Research and Information Engineering, Cornell University, 228 Rhodes Hall, Ithaca, NY, 14853, USA
Jamol Pender
Department of Mathematics, Sibley School of Mechanical and Aerospace Engineering, Cornell University, 535 Malott Hall, Ithaca, NY, 14853, USA
Richard H. Rand
Center for Applied Mathematics, Cornell University, Rhodes Hall 657, Ithaca, NY, 14853, USA
Elizabeth Wesson
- Sophia Novitzky
You can also search for this author inPubMed Google Scholar
- Jamol Pender
You can also search for this author inPubMed Google Scholar
- Richard H. Rand
You can also search for this author inPubMed Google Scholar
- Elizabeth Wesson
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJamol Pender.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
1.1Uniqueness and existence of the equilibrium
Proof of Theorem 3.2: To check that\(q_i(t)= \frac{\lambda }{N\mu }\) is an equilibrium, plug into Eq. (3.9) to get

To show uniqueness, we will argue by contradiction. Suppose there is another equilibrium given by\({\bar{q}}_i\),\(1\le i \le N\), and for somei we have\(q^*_i \ne {\bar{q}}_i\). The following condition must hold:

Hence, the mean of\({\bar{q}}_i\) is\(\frac{\lambda }{N\mu } \) and, since\({\bar{q}}_i\) cannot all be equal to each other, there must exist some\({\bar{q}}_s\) that is smaller than the mean, and some\({\bar{q}}_g\) that is greater than the mean:
This leads to a contradiction:





Since, then\({\bar{q}}_i(t)\) is not an equilibrium, and the equilibrium (3.12) is unique.
1.2Approximation to amplitude of oscillations in queues
To see how the velocity information affects the behavior of the queues after a Hopf bifurcation occurs, we need to develop approximations for the amplitude of oscillations. In Sect. 5, we find a first-order approximation to the amplitude but observe that it is not sufficiently accurate. Hence, we require a second-order approximation. The steps to determine the second-order approximation are outlined below.
This process is very closely related to the steps taken in Theorem 5.1. We begin with Eq. (5.7), and expand the time\(\tau = \omega t\). Then expand our functions of interest in\(\epsilon \) to the second order:
where\(\Delta _0\) and\(\omega _0\) are the delay and frequency at bifurcation, so\(\Delta _0 = \Delta _\mathrm{cr}\) and\(\omega _\mathrm{cr}\). By collecting all the terms with the like powers of\(\epsilon \) into separate equations, we get equations from which we can solve for\(x_0\) and\(x_1\). From the equation for\(\epsilon ^0\), we find that\(x_0(\tau ) = A \cos (\tau )\) is a solution. Next, we use the equation for\(\epsilon ^1\) terms to solve forA, which has the expression given by Eq. (5.35). We can now find\(x_1\) that has a solution of the form\(x_1(\tau ) = a_1 \sin (\tau ) + a_2 \cos (\tau ) + a_3 \sin (3 \tau ) + a_4 \cos (3 \tau )\). The coefficients\(a_3\) and\(a_4\) are determined from the equation for\(\epsilon ^1\) terms. We impose the initial condition\(x'(0) = 0\) to ensure that the maximum amplitude is at 0, which implies\(a_1 = - 3 a_3\). Lastly, we determine\(a_2\) by eliminating the secular terms from the equation for\(\epsilon ^2\) terms. Therefore, the second-order approximation of the amplitude of oscillations can be deduced from
where the coefficients are given below:
To reproduce our numerical results from Sects. 5.3–5.4, set\(\epsilon = 1\) and\(\Delta _1 = \frac{1}{\epsilon }(\Delta - \Delta _0)\), with\(\Delta _0\) given by Eq. (3.52). Note that in the equations above there is no presence of\(\Delta _2\), because we have set\(\Delta _2 = 0\). There is no equation that determines\(\Delta _2\) and\(\Delta _1\) uniquely, and the only restriction is that\(\Delta = \Delta _0 + \epsilon \Delta _1 + \epsilon ^2 \Delta _2\). Prior to choosing\(\Delta _2 \) to be 0, we experimented numerically with different combinations of\(\Delta _1\) and\(\Delta _2\) and determined that the pair\(\Delta _1 = \frac{1}{\epsilon }(\Delta - \Delta _0)\) and\(\Delta _2 = 0\) results in nearly the most accurate approximation.
Rights and permissions
About this article
Cite this article
Novitzky, S., Pender, J., Rand, R.H.et al. Limiting the oscillations in queues with delayed information through a novel type of delay announcement.Queueing Syst95, 281–330 (2020). https://doi.org/10.1007/s11134-020-09657-9
Received:
Revised:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- Neutral delay-differential equation
- Hopf bifurcation
- Perturbations method
- Operations research
- Queueing theory
- Fluid limits
- Delay announcement
- Velocity