- Ming-Hui Zhang ORCID:orcid.org/0000-0002-7102-75051,
- Jia-Hui Xie1 na1,
- Jia-Yao Wu1,
- Lin-Yang Yue1,
- Chen He1,
- Zheng-Wen Cao1 &
- …
- Jin-Ye Peng1
380Accesses
Abstract
Quantum digital signatures (QDSs) play a crucial role in modern communication. Generally, the performance of QDSs depends on the key generation protocol (KGP). However, as a part of quantum key distribution (QKD), the KGP is restricted by the fundamental rate-loss bound (PLOB bound). Fortunately, recent work indicates that twin-field QKD (TF-QKD) can overcome this bound. In general, the users in standard decoy-state TF-QKD protocols are assumed to emit a weak coherent-state source with continuously randomized phase; however, this assumption is not practically available in experimental implementation and may open a security loophole for eavesdroppers. To bridge the gap between theory and practice, this work presents two practical TF-QDS protocols that can be realized with common optical components and further implemented in a quantum fibre network. One protocol uses a continuous-phase-randomized source but does not perform phase post-selection, called ProtocolI. The other protocol uses a discrete-phase-randomized source with phase post-selection, called ProtocolII. Numerical simulation results show that the two proposed TF-QDS protocols can improve the performance of QDS in terms of both the signature rate and secure transmission distance compared with BB84-QDS and measurement-device-independent QDS.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.
References
Gottesman, D., Chuang, I.: Quantum digital signatures.arXiv: quant-ph/0105032 (2001)
Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A74(2), 022304 (2006)
Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun.3(1), 1174 (2012)
Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett.112(4), 040502 (2014)
Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett.113, 040502 (2014)
Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A91(4), 042304 (2015)
Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A93(1), 012329 (2016)
Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A93(3), 032325 (2016)
Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A94(2), 022328 (2016)
Yin, H.-L., Fu, Y., Chen, Z.-B.: Practical quantum digital signature. Phys. Rev. A93(3), 032316 (2016)
Yin, H.-L., Fu, Y., Liu, H., Tang, Q.-J., Wang, J., You, L.-X., Zhang, W.-J., Chen, S.-J., Wang, Z., Zhang, Q., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A95(3), 032334 (2017)
Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett.41(21), 4883–4886 (2016)
Roberts, G., Lucamarini, M., Yuan, Z., Dynes, J., Comandar, L., Sharpe, A., Shields, A., Curty, M., Puthoor, I., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun.8(1), 1–7 (2017)
Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett.117(10), 100503 (2016)
An, X.-B., Zhang, H., Zhang, C.-M., Chen, W., Wang, S., Yin, Z.-Q., Wang, Q., He, D.-Y., Hao, P.-L., Liu, S.-F., et al.: Practical quantum digital signature with a gigahertz bb84 quantum key distribution system. Opt. Lett.44(1), 139–142 (2019)
Thornton, M., Scott, H., Croal, C., Korolkova, N.: Continuous-variable quantum digital signatures over insecure channels. Phys. Rev. A99(3), 032341 (2019)
Yin, H.-L., Wang, W.-L., Tang, Y.-L., Zhao, Q., Liu, H., Sun, X.-X., Zhang, W.-J., Li, H., Puthoor, I.V., You, L.-X., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A95(4), 042338 (2017)
Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett.94(23), 230504 (2005)
Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A89(2), 022307 (2014)
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett.108(13), 130503 (2012)
Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun.5(1), 1–7 (2014)
Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun.5(1), 1–7 (2014)
Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun.8(1), 1–15 (2017)
Liao, S.-K., Cai, W.-Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.-G., Liu, W.-Y., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett.120(3), 030501 (2018)
Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys.83(1), 33 (2011)
Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature557(7705), 400–403 (2018)
Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X8(3), 031043 (2018)
Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A98(4), 042332 (2018)
Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A98(6), 062323 (2018)
Yu, Z.-W., Hu, X.-L., Jiang, C., Xu, H., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep.9(1), 1–8 (2019)
Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl.11(3), 034053 (2019)
Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf.5(1), 1–6 (2019)
Zhang, C.-M., Xu, Y.-W., Wang, R., Wang, Q.: Twin-field quantum key distribution with discrete-phase-randomized sources. Phys. Rev. Appl.14(6), 064070 (2020)
Currás-Lorenzo, G., Wooltorton, L., Razavi, M.: Twin-field quantum key distribution with fully discrete phase randomization. Phys. Rev. Appl.15(1), 014016 (2021)
Wang, R., Yin, Z.-Q., Lu, F.-Y., Wang, S., Chen, W., Zhang, C.-M., Huang, W., Xu, B.-J., Guo, G.-C., Han, Z.-F.: Optimized protocol for twin-field quantum key distribution. Commun. Phys.3(1), 1–7 (2020)
Maeda, K., Sasaki, T., Koashi, M.: Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun.10(1), 3140 (2019)
Yin, H.-L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep.9(1), 1–13 (2019)
Zeng, P., Wu, W., Ma, X.: Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel. Phys. Rev. Appl.13(6), 064013 (2020)
Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.-K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett.123(10), 100506 (2019)
Liu, Y., Yu, Z.-W., Zhang, W., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., et al.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett.123(10), 100505 (2019)
Minder, M., Pittaluga, M., Roberts, G., Lucamarini, M., Dynes, J., Yuan, Z., Shields, A.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon.13(5), 334–338 (2019)
Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X9(2), 021046 (2019)
Grasselli, F., Curty, M.: Practical decoy-state method for twin-field quantum key distribution. New J. Phys.21(7), 073001 (2019)
Yin, H.-L., Chen, Z.-B.: Finite-key analysis for twin-field quantum key distribution with composable security. Sci. Rep.9(1), 1–9 (2019)
He, S.-F., Wang, Y., Li, H.-W., Bao, W.-S.: Finite-key analysis for a practical decoy-state twin-field quantum key distribution.arXiv:1910.12416 (2019)
Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Zhu, Y.-G., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photonics1–8, 154–161 (2022)
Zhang, C.-H., Fan, Y.-T., Zhang, C.-M., Guo, G.-C., Wang, Q.: Twin-field quantum digital signatures.arXiv:2003.11262 (2020)
Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett.106(11), 110506 (2011)
Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat.2, 39–48 (1974)
Acknowledgements
We would like to thank Chunmei Zhang for discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61801385, 62071381), China Postdoctoral Science Foundation (Grant No. 221628), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JQ-602) and Foundation of Shaanxi Province Education Department.
Author information
Jia-Hui Xie have contributed equally to this work.
Authors and Affiliations
School of Information Science and Technology, Northwest University, Xi’an, 710127, People’s Republic of China
Ming-Hui Zhang, Jia-Hui Xie, Jia-Yao Wu, Lin-Yang Yue, Chen He, Zheng-Wen Cao & Jin-Ye Peng
- Ming-Hui Zhang
You can also search for this author inPubMed Google Scholar
- Jia-Hui Xie
You can also search for this author inPubMed Google Scholar
- Jia-Yao Wu
You can also search for this author inPubMed Google Scholar
- Lin-Yang Yue
You can also search for this author inPubMed Google Scholar
- Chen He
You can also search for this author inPubMed Google Scholar
- Zheng-Wen Cao
You can also search for this author inPubMed Google Scholar
- Jin-Ye Peng
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMing-Hui Zhang.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, MH., Xie, JH., Wu, JY.et al. Practical long-distance twin-field quantum digital signatures.Quantum Inf Process21, 150 (2022). https://doi.org/10.1007/s11128-022-03489-7
Received:
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative