Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Practical long-distance twin-field quantum digital signatures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum digital signatures (QDSs) play a crucial role in modern communication. Generally, the performance of QDSs depends on the key generation protocol (KGP). However, as a part of quantum key distribution (QKD), the KGP is restricted by the fundamental rate-loss bound (PLOB bound). Fortunately, recent work indicates that twin-field QKD (TF-QKD) can overcome this bound. In general, the users in standard decoy-state TF-QKD protocols are assumed to emit a weak coherent-state source with continuously randomized phase; however, this assumption is not practically available in experimental implementation and may open a security loophole for eavesdroppers. To bridge the gap between theory and practice, this work presents two practical TF-QDS protocols that can be realized with common optical components and further implemented in a quantum fibre network. One protocol uses a continuous-phase-randomized source but does not perform phase post-selection, called ProtocolI. The other protocol uses a discrete-phase-randomized source with phase post-selection, called ProtocolII. Numerical simulation results show that the two proposed TF-QDS protocols can improve the performance of QDS in terms of both the signature rate and secure transmission distance compared with BB84-QDS and measurement-device-independent QDS.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

References

  1. Gottesman, D., Chuang, I.: Quantum digital signatures.arXiv: quant-ph/0105032 (2001)

  2. Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A74(2), 022304 (2006)

    Article ADS  Google Scholar 

  3. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.: Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light. Nat. Commun.3(1), 1174 (2012)

    Article ADS  Google Scholar 

  4. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quantum memory. Phys. Rev. Lett.112(4), 040502 (2014)

    Article ADS  Google Scholar 

  5. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson, E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the requirement of quantum memory. Phys. Rev. Lett.113, 040502 (2014)

    Article ADS  Google Scholar 

  6. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with quantum-key-distribution components. Phys. Rev. A91(4), 042304 (2015)

    Article ADS  Google Scholar 

  7. Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V., Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-range quantum digital signatures. Phys. Rev. A93(1), 012329 (2016)

    Article ADS  Google Scholar 

  8. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using insecure quantum channels. Phys. Rev. A93(3), 032325 (2016)

    Article ADS  Google Scholar 

  9. Puthoor, I.V., Amiri, R., Wallden, P., Curty, M., Andersson, E.: Measurement-device-independent quantum digital signatures. Phys. Rev. A94(2), 022328 (2016)

    Article ADS MathSciNet  Google Scholar 

  10. Yin, H.-L., Fu, Y., Chen, Z.-B.: Practical quantum digital signature. Phys. Rev. A93(3), 032316 (2016)

    Article ADS  Google Scholar 

  11. Yin, H.-L., Fu, Y., Liu, H., Tang, Q.-J., Wang, J., You, L.-X., Zhang, W.-J., Chen, S.-J., Wang, Z., Zhang, Q., et al.: Experimental quantum digital signature over 102 km. Phys. Rev. A95(3), 032334 (2017)

    Article ADS  Google Scholar 

  12. Collins, R.J., Amiri, R., Fujiwara, M., Honjo, T., Shimizu, K., Tamaki, K., Takeoka, M., Andersson, E., Buller, G.S., Sasaki, M.: Experimental transmission of quantum digital signatures over 90 km of installed optical fiber using a differential phase shift quantum key distribution system. Opt. Lett.41(21), 4883–4886 (2016)

    Article ADS  Google Scholar 

  13. Roberts, G., Lucamarini, M., Yuan, Z., Dynes, J., Comandar, L., Sharpe, A., Shields, A., Curty, M., Puthoor, I., Andersson, E.: Experimental measurement-device-independent quantum digital signatures. Nat. Commun.8(1), 1–7 (2017)

    Article  Google Scholar 

  14. Croal, C., Peuntinger, C., Heim, B., Khan, I., Marquardt, C., Leuchs, G., Wallden, P., Andersson, E., Korolkova, N.: Free-space quantum signatures using heterodyne measurements. Phys. Rev. Lett.117(10), 100503 (2016)

    Article ADS  Google Scholar 

  15. An, X.-B., Zhang, H., Zhang, C.-M., Chen, W., Wang, S., Yin, Z.-Q., Wang, Q., He, D.-Y., Hao, P.-L., Liu, S.-F., et al.: Practical quantum digital signature with a gigahertz bb84 quantum key distribution system. Opt. Lett.44(1), 139–142 (2019)

    Article ADS  Google Scholar 

  16. Thornton, M., Scott, H., Croal, C., Korolkova, N.: Continuous-variable quantum digital signatures over insecure channels. Phys. Rev. A99(3), 032341 (2019)

    Article ADS  Google Scholar 

  17. Yin, H.-L., Wang, W.-L., Tang, Y.-L., Zhao, Q., Liu, H., Sun, X.-X., Zhang, W.-J., Li, H., Puthoor, I.V., You, L.-X., et al.: Experimental measurement-device-independent quantum digital signatures over a metropolitan network. Phys. Rev. A95(4), 042338 (2017)

    Article ADS  Google Scholar 

  18. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett.94(23), 230504 (2005)

    Article ADS  Google Scholar 

  19. Lim, C.C.W., Curty, M., Walenta, N., Xu, F., Zbinden, H.: Concise security bounds for practical decoy-state quantum key distribution. Phys. Rev. A89(2), 022307 (2014)

    Article ADS  Google Scholar 

  20. Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett.108(13), 130503 (2012)

    Article ADS  Google Scholar 

  21. Curty, M., Xu, F., Cui, W., Lim, C.C.W., Tamaki, K., Lo, H.-K.: Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun.5(1), 1–7 (2014)

    Article  Google Scholar 

  22. Takeoka, M., Guha, S., Wilde, M.M.: Fundamental rate-loss tradeoff for optical quantum key distribution. Nat. Commun.5(1), 1–7 (2014)

    Article  Google Scholar 

  23. Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun.8(1), 1–15 (2017)

    Article  Google Scholar 

  24. Liao, S.-K., Cai, W.-Q., Handsteiner, J., Liu, B., Yin, J., Zhang, L., Rauch, D., Fink, M., Ren, J.-G., Liu, W.-Y., et al.: Satellite-relayed intercontinental quantum network. Phys. Rev. Lett.120(3), 030501 (2018)

    Article ADS  Google Scholar 

  25. Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys.83(1), 33 (2011)

    Article ADS  Google Scholar 

  26. Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance limit of quantum key distribution without quantum repeaters. Nature557(7705), 400–403 (2018)

    Article ADS  Google Scholar 

  27. Ma, X., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X8(3), 031043 (2018)

    Google Scholar 

  28. Lin, J., Lütkenhaus, N.: Simple security analysis of phase-matching measurement-device-independent quantum key distribution. Phys. Rev. A98(4), 042332 (2018)

    Article ADS  Google Scholar 

  29. Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Twin-field quantum key distribution with large misalignment error. Phys. Rev. A98(6), 062323 (2018)

    Article ADS  Google Scholar 

  30. Yu, Z.-W., Hu, X.-L., Jiang, C., Xu, H., Wang, X.-B.: Sending-or-not-sending twin-field quantum key distribution in practice. Sci. Rep.9(1), 1–8 (2019)

    ADS  Google Scholar 

  31. Cui, C., Yin, Z.-Q., Wang, R., Chen, W., Wang, S., Guo, G.-C., Han, Z.-F.: Twin-field quantum key distribution without phase postselection. Phys. Rev. Appl.11(3), 034053 (2019)

    Article ADS  Google Scholar 

  32. Curty, M., Azuma, K., Lo, H.-K.: Simple security proof of twin-field type quantum key distribution protocol. npj Quantum Inf.5(1), 1–6 (2019)

    Article  Google Scholar 

  33. Zhang, C.-M., Xu, Y.-W., Wang, R., Wang, Q.: Twin-field quantum key distribution with discrete-phase-randomized sources. Phys. Rev. Appl.14(6), 064070 (2020)

    Article ADS  Google Scholar 

  34. Currás-Lorenzo, G., Wooltorton, L., Razavi, M.: Twin-field quantum key distribution with fully discrete phase randomization. Phys. Rev. Appl.15(1), 014016 (2021)

    Article ADS  Google Scholar 

  35. Wang, R., Yin, Z.-Q., Lu, F.-Y., Wang, S., Chen, W., Zhang, C.-M., Huang, W., Xu, B.-J., Guo, G.-C., Han, Z.-F.: Optimized protocol for twin-field quantum key distribution. Commun. Phys.3(1), 1–7 (2020)

    Article  Google Scholar 

  36. Maeda, K., Sasaki, T., Koashi, M.: Repeaterless quantum key distribution with efficient finite-key analysis overcoming the rate-distance limit. Nat. Commun.10(1), 3140 (2019)

    Article ADS  Google Scholar 

  37. Yin, H.-L., Fu, Y.: Measurement-device-independent twin-field quantum key distribution. Sci. Rep.9(1), 1–13 (2019)

    Article ADS  Google Scholar 

  38. Zeng, P., Wu, W., Ma, X.: Symmetry-protected privacy: beating the rate-distance linear bound over a noisy channel. Phys. Rev. Appl.13(6), 064013 (2020)

    Article ADS  Google Scholar 

  39. Zhong, X., Hu, J., Curty, M., Qian, L., Lo, H.-K.: Proof-of-principle experimental demonstration of twin-field type quantum key distribution. Phys. Rev. Lett.123(10), 100506 (2019)

    Article ADS  Google Scholar 

  40. Liu, Y., Yu, Z.-W., Zhang, W., Guan, J.-Y., Chen, J.-P., Zhang, C., Hu, X.-L., Li, H., Jiang, C., Lin, J., et al.: Experimental twin-field quantum key distribution through sending or not sending. Phys. Rev. Lett.123(10), 100505 (2019)

    Article ADS  Google Scholar 

  41. Minder, M., Pittaluga, M., Roberts, G., Lucamarini, M., Dynes, J., Yuan, Z., Shields, A.: Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon.13(5), 334–338 (2019)

    Article ADS  Google Scholar 

  42. Wang, S., He, D.-Y., Yin, Z.-Q., Lu, F.-Y., Cui, C.-H., Chen, W., Zhou, Z., Guo, G.-C., Han, Z.-F.: Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X9(2), 021046 (2019)

    Google Scholar 

  43. Grasselli, F., Curty, M.: Practical decoy-state method for twin-field quantum key distribution. New J. Phys.21(7), 073001 (2019)

    Article ADS MathSciNet  Google Scholar 

  44. Yin, H.-L., Chen, Z.-B.: Finite-key analysis for twin-field quantum key distribution with composable security. Sci. Rep.9(1), 1–9 (2019)

    Article ADS MathSciNet  Google Scholar 

  45. He, S.-F., Wang, Y., Li, H.-W., Bao, W.-S.: Finite-key analysis for a practical decoy-state twin-field quantum key distribution.arXiv:1910.12416 (2019)

  46. Wang, S., Yin, Z.-Q., He, D.-Y., Chen, W., Wang, R.-Q., Ye, P., Zhou, Y., Fan-Yuan, G.-J., Wang, F.-X., Zhu, Y.-G., et al.: Twin-field quantum key distribution over 830-km fibre. Nat. Photonics1–8, 154–161 (2022)

    Article ADS  Google Scholar 

  47. Zhang, C.-H., Fan, Y.-T., Zhang, C.-M., Guo, G.-C., Wang, Q.: Twin-field quantum digital signatures.arXiv:2003.11262 (2020)

  48. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett.106(11), 110506 (2011)

    Article ADS  Google Scholar 

  49. Serfling, R.J.: Probability inequalities for the sum in sampling without replacement. Ann. Stat.2, 39–48 (1974)

    Article MathSciNet MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Chunmei Zhang for discussions. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61801385, 62071381), China Postdoctoral Science Foundation (Grant No. 221628), Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2020JQ-602) and Foundation of Shaanxi Province Education Department.

Author information

Author notes
  1. Jia-Hui Xie have contributed equally to this work.

Authors and Affiliations

  1. School of Information Science and Technology, Northwest University, Xi’an, 710127, People’s Republic of China

    Ming-Hui Zhang, Jia-Hui Xie, Jia-Yao Wu, Lin-Yang Yue, Chen He, Zheng-Wen Cao & Jin-Ye Peng

Authors
  1. Ming-Hui Zhang

    You can also search for this author inPubMed Google Scholar

  2. Jia-Hui Xie

    You can also search for this author inPubMed Google Scholar

  3. Jia-Yao Wu

    You can also search for this author inPubMed Google Scholar

  4. Lin-Yang Yue

    You can also search for this author inPubMed Google Scholar

  5. Chen He

    You can also search for this author inPubMed Google Scholar

  6. Zheng-Wen Cao

    You can also search for this author inPubMed Google Scholar

  7. Jin-Ye Peng

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toMing-Hui Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp