Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Topological quantum phase transitions in the 2-D Kitaev honeycomb model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the topological quantum phase transition in the 2-D Kitaev honeycomb model by making use of the square root of the quantum Jensen–Shannon divergence and find that the square root of the quantum Jensen–Shannon divergence exhibits singular behaviors at the critical point of quantum phase transition. The scaling behaviors of the square root of the quantum Jensen–Shannon divergence are also examined from the first-order derivatives, and we demonstrate that the square root of the quantum Jensen–Shannon divergence obeys universal finite-size scaling laws. Furthermore, we explore the performance of quantum discord and the relative entropy coherence of the system. It is shown that quantum discord and relative entropy coherence display similar critical behaviors, and the square root of the quantum Jensen–Shannon divergence and quantum discord can serve as good indicators for quantum phase transitions.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature416(6881), 608–610 (2002)

    Article ADS  Google Scholar 

  2. Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett.93(25), 250404 (2004)

    Article ADS MathSciNet  Google Scholar 

  3. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys.80(2), 517–576 (2008)

    Article ADS MathSciNet  Google Scholar 

  4. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  5. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A66, 032110 (2002)

    Article ADS MathSciNet  Google Scholar 

  6. Gu, S.J., Lin, H.Q., Li, Y.Q.: Entanglement, quantum phase transition, and scaling in the\(\rm XXZ\) chain. Phys. Rev. A68, 042330 (2003)

    Article ADS  Google Scholar 

  7. Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A71, 062310 (2005)

    Article ADS  Google Scholar 

  8. Luo, D.W., Xu, J.B.: Quantum phase transition by employing trace distance along with the density matrix renormalization group. Ann. Phys.354, 298–305 (2015)

    Article ADS MathSciNet  Google Scholar 

  9. Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A94, 022112 (2016)

    Article ADS  Google Scholar 

  10. Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen–Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A72, 052310 (2005)

    Article ADS  Google Scholar 

  11. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory37(1), 145–151 (1991).https://doi.org/10.1109/18.61115

    Article MathSciNet MATH  Google Scholar 

  12. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A96, 012341 (2017)

    Article ADS  Google Scholar 

  13. Lamberti, P.W., Majtey, A.P., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen–Shannon divergence. Phys. Rev. A77, 052311 (2008)

    Article ADS  Google Scholar 

  14. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett.88(1), 017901 (2001)

    Article ADS  Google Scholar 

  15. Sachdev, S.: Quantum phase transitions. In: Handbook of Magnetism and Advanced Magnetic Materials (2007).https://doi.org/10.1002/9780470022184.hmm108

  16. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mančal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature446(7137), 782–786 (2007)

    Article ADS  Google Scholar 

  17. Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature463(7281), 644–647 (2010)

    Article ADS  Google Scholar 

  18. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett.113, 140401 (2014)

    Article ADS  Google Scholar 

  19. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A91, 042120 (2015)

    Article ADS  Google Scholar 

  20. Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys.321(1), 2–111 (2006)

    Article ADS MathSciNet  Google Scholar 

  21. Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B80(1), 014403 (2009)

    Article ADS  Google Scholar 

  22. Yang, S., Gu, S.J., Sun, C.P., Lin, H.Q.: Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A78(1), 012304 (2008)

    Article ADS  Google Scholar 

  23. Feng, X.Y., Zhang, G.M., Xiang, T.: Topological characterization of quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett.98(8), 087204 (2007)

    Article ADS  Google Scholar 

  24. Lee, D.H., Zhang, G.M., Xiang, T.: Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions. Phys. Rev. Lett.99(19), 196805 (2007)

    Article ADS  Google Scholar 

  25. Schmidt, K.P., Dusuel, S., Vidal, J.: Emergent fermions and anyons in the Kitaev model. Phys. Rev. Lett.100(5), 057208 (2008)

    Article ADS  Google Scholar 

  26. Vidal, J., Schmidt, K.P., Dusuel, S.: Perturbative approach to an exactly solved problem: Kitaev honeycomb model. Phys. Rev. B78(24), 245121 (2008)

    Article ADS  Google Scholar 

  27. Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett.91(9), 090402 (2003)

    Article ADS  Google Scholar 

  28. André, A., DeMille, D., Doyle, J.M., Lukin, M.D., Maxwell, S.E., Rabl, P., Schoelkopf, R.J., Zoller, P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys.2(9), 636 (2006)

    Article  Google Scholar 

  29. Chen, H.D., Nussinov, Z.: Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations. J. Phys. A Math. Theor.41(7), 075001 (2008)

    Article ADS MathSciNet  Google Scholar 

  30. Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B80, 014403 (2009)

    Article ADS  Google Scholar 

  31. Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B89(13), 134101 (2014)

    Article ADS  Google Scholar 

  32. Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys.16(3), 407–466 (1961)

    Article ADS MathSciNet  Google Scholar 

  33. Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys.44(1), 015503 (2010)

    Article ADS  Google Scholar 

  34. Baumgratz, T., Cramer, M., Plenio, M.: Quantifying coherence. Phys. Rev. Lett.113(14), 140401 (2014)

    Article ADS  Google Scholar 

  35. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett.114(21), 210401 (2015)

    Article ADS  Google Scholar 

  36. Li, S.P., Sun, Z.H.: Local and intrinsic quantum coherence in critical systems. Phys. Rev. A98, 022317 (2018)

    Article ADS  Google Scholar 

  37. Cui, J., Cao, J.P., Fan, H.: Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model. Phys. Rev. A82, 022319 (2010)

    Article ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11274274) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2017FZA3005 and 2016XZZX002-01).

Author information

Authors and Affiliations

  1. Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou, 310027, People’s Republic of China

    Qi Chen, Guo-Qing Zhang, Jun-Qing Cheng & Jing-Bo Xu

Authors
  1. Qi Chen

    You can also search for this author inPubMed Google Scholar

  2. Guo-Qing Zhang

    You can also search for this author inPubMed Google Scholar

  3. Jun-Qing Cheng

    You can also search for this author inPubMed Google Scholar

  4. Jing-Bo Xu

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toJing-Bo Xu.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp