537Accesses
11Citations
Abstract
We study the topological quantum phase transition in the 2-D Kitaev honeycomb model by making use of the square root of the quantum Jensen–Shannon divergence and find that the square root of the quantum Jensen–Shannon divergence exhibits singular behaviors at the critical point of quantum phase transition. The scaling behaviors of the square root of the quantum Jensen–Shannon divergence are also examined from the first-order derivatives, and we demonstrate that the square root of the quantum Jensen–Shannon divergence obeys universal finite-size scaling laws. Furthermore, we explore the performance of quantum discord and the relative entropy coherence of the system. It is shown that quantum discord and relative entropy coherence display similar critical behaviors, and the square root of the quantum Jensen–Shannon divergence and quantum discord can serve as good indicators for quantum phase transitions.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature416(6881), 608–610 (2002)
Wu, L.A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett.93(25), 250404 (2004)
Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys.80(2), 517–576 (2008)
Sachdev, S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (1999)
Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A66, 032110 (2002)
Gu, S.J., Lin, H.Q., Li, Y.Q.: Entanglement, quantum phase transition, and scaling in the\(\rm XXZ\) chain. Phys. Rev. A68, 042330 (2003)
Gilchrist, A., Langford, N.K., Nielsen, M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A71, 062310 (2005)
Luo, D.W., Xu, J.B.: Quantum phase transition by employing trace distance along with the density matrix renormalization group. Ann. Phys.354, 298–305 (2015)
Chen, J.J., Cui, J., Zhang, Y.R., Fan, H.: Coherence susceptibility as a probe of quantum phase transitions. Phys. Rev. A94, 022112 (2016)
Majtey, A.P., Lamberti, P.W., Prato, D.P.: Jensen–Shannon divergence as a measure of distinguishability between mixed quantum states. Phys. Rev. A72, 052310 (2005)
Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory37(1), 145–151 (1991).https://doi.org/10.1109/18.61115
Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky–Moriya interaction. Phys. Rev. A96, 012341 (2017)
Lamberti, P.W., Majtey, A.P., Borras, A., Casas, M., Plastino, A.: Metric character of the quantum Jensen–Shannon divergence. Phys. Rev. A77, 052311 (2008)
Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett.88(1), 017901 (2001)
Sachdev, S.: Quantum phase transitions. In: Handbook of Magnetism and Advanced Magnetic Materials (2007).https://doi.org/10.1002/9780470022184.hmm108
Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Mančal, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature446(7137), 782–786 (2007)
Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature463(7281), 644–647 (2010)
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett.113, 140401 (2014)
Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A91, 042120 (2015)
Kitaev, A.: Anyons in an exactly solved model and beyond. Ann. Phys.321(1), 2–111 (2006)
Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B80(1), 014403 (2009)
Yang, S., Gu, S.J., Sun, C.P., Lin, H.Q.: Fidelity susceptibility and long-range correlation in the Kitaev honeycomb model. Phys. Rev. A78(1), 012304 (2008)
Feng, X.Y., Zhang, G.M., Xiang, T.: Topological characterization of quantum phase transitions in a spin-1/2 model. Phys. Rev. Lett.98(8), 087204 (2007)
Lee, D.H., Zhang, G.M., Xiang, T.: Edge solitons of topological insulators and fractionalized quasiparticles in two dimensions. Phys. Rev. Lett.99(19), 196805 (2007)
Schmidt, K.P., Dusuel, S., Vidal, J.: Emergent fermions and anyons in the Kitaev model. Phys. Rev. Lett.100(5), 057208 (2008)
Vidal, J., Schmidt, K.P., Dusuel, S.: Perturbative approach to an exactly solved problem: Kitaev honeycomb model. Phys. Rev. B78(24), 245121 (2008)
Duan, L.M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett.91(9), 090402 (2003)
André, A., DeMille, D., Doyle, J.M., Lukin, M.D., Maxwell, S.E., Rabl, P., Schoelkopf, R.J., Zoller, P.: A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nat. Phys.2(9), 636 (2006)
Chen, H.D., Nussinov, Z.: Exact results of the Kitaev model on a hexagonal lattice: spin states, string and brane correlators, and anyonic excitations. J. Phys. A Math. Theor.41(7), 075001 (2008)
Zhao, J.H., Zhou, H.Q.: Singularities in ground-state fidelity and quantum phase transitions for the Kitaev model. Phys. Rev. B80, 014403 (2009)
Hofmann, M., Osterloh, A., Gühne, O.: Scaling of genuine multiparticle entanglement close to a quantum phase transition. Phys. Rev. B89(13), 134101 (2014)
Lieb, E., Schultz, T., Mattis, D.: Two soluble models of an antiferromagnetic chain. Ann. Phys.16(3), 407–466 (1961)
Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys.44(1), 015503 (2010)
Baumgratz, T., Cramer, M., Plenio, M.: Quantifying coherence. Phys. Rev. Lett.113(14), 140401 (2014)
Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett.114(21), 210401 (2015)
Li, S.P., Sun, Z.H.: Local and intrinsic quantum coherence in critical systems. Phys. Rev. A98, 022317 (2018)
Cui, J., Cao, J.P., Fan, H.: Quantum-information approach to the quantum phase transition in the Kitaev honeycomb model. Phys. Rev. A82, 022319 (2010)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 11274274) and the Fundamental Research Funds for the Central Universities (Grant Nos. 2017FZA3005 and 2016XZZX002-01).
Author information
Authors and Affiliations
Zhejiang Institute of Modern Physics and Department of Physics, Zhejiang University, Hangzhou, 310027, People’s Republic of China
Qi Chen, Guo-Qing Zhang, Jun-Qing Cheng & Jing-Bo Xu
- Qi Chen
You can also search for this author inPubMed Google Scholar
- Guo-Qing Zhang
You can also search for this author inPubMed Google Scholar
- Jun-Qing Cheng
You can also search for this author inPubMed Google Scholar
- Jing-Bo Xu
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toJing-Bo Xu.
Rights and permissions
About this article
Cite this article
Chen, Q., Zhang, GQ., Cheng, JQ.et al. Topological quantum phase transitions in the 2-D Kitaev honeycomb model.Quantum Inf Process18, 8 (2019). https://doi.org/10.1007/s11128-018-2115-3
Received:
Accepted:
Published:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative