511Accesses
1Altmetric
Abstract
In this paper, an improved adaptive weights alternating direction method of multipliers algorithm is developed to implement the optimization scheme for recovering the quantum state in nearly pure states. The proposed approach is superior to many existing methods because it exploits the low-rank property of density matrices, and it can deal with unexpected sparse outliers as well. The numerical experiments are provided to verify our statements by comparing the results to three different optimization algorithms, using both adaptive and fixed weights in the algorithm, in the cases of with and without external noise, respectively. The results indicate that the improved algorithm has better performances in both estimation accuracy and robustness to external noise. The further simulation results show that the successful recovery rate increases when more qubits are estimated, which in fact satisfies the compressive sensing theory and makes the proposed approach more promising.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Smith, A., Riofro, C., Anderson, B., Martinez, H., Deutsch, I., Jessen, P.: Quantum state tomography by continuous measurement and compressed sensing. Phys. Rev. A87, 030102 (2013)
Wu, X., Xu, K.: Partial standard quantum process tomography. Quantum Inf. Process.12(2), 1379–1393 (2013). doi:10.1007/s11128-012-0473-9
Heinosaari, T., Mazzarella, L., Wolf, M.: Quantum tomography under prior information. Commun. Math. Phys.318(2), 355–374 (2013). doi:10.1007/s00220-013-1671-8
Wu, L.A., Byrd, M.: Self-protected quantum algorithms based on quantum state tomography. Quantum Inf. Process.8(1), 1–12 (2009). doi:10.1007/s11128-008-0090-9
Baraniuk, R.: Compressive sensing. IEEE Signal Process. Mag.24(4), 118–121 (2007). doi:10.1109/MSP.2007.4286571
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory52, 1289–1306 (2006)
Gross, D., Liu, Y., Flammia, S.T., Becker, S., Eisert, J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett.105(15), 150401 (2010)
Schwemmer, C., Tóth, G., Niggebaum, A., Moroder, T., Gross, D., Gühne, O., Weinfurter, H.: Experimental comparison of efficient tomography schemes for a six-qubit state. Phys. Rev. Lett.113(5), 0401503 (2014)
Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys.10(9), 631–633 (2014)
Shabani, A., Kosut, R.L., Mohseni, M., Rabitz, H., Broome, M.A., Almeida, M.P., Fedrizzi, A., White, A.G.: Efficient measurement of quantum dynamics via compressive sensing. Phys. Rev. Lett.106(4), 100401 (2011). doi:10.1103/PhysRevLett.106.100401
Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys.14(9), 095022 (2012)
Miosso, C., von Borries, R., Argaez, M., Velazquez, L., Quintero, C., Potes, C.: Compressive sensing reconstruction with prior information by iteratively reweighted least-squares. IEEE Trans. Signal Process.57(6), 2424–2431 (2009). doi:10.1109/TSP.2009.2016889
Kosut, R., Lidar, D.: Quantum error correction via convex optimization. Quantum Inf. Process.8(5), 443–459 (2009). doi:10.1007/s11128-009-0120-2
Liu, Y.: Universal low-rank matrix recovery from pauli measurements. In: Proceedings of Advances in Neural Information Processing Systems, pp. 1638–1646 (2011)
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn.3(1), 1–22 (2011)
He, B., Yang, H., Wang, S.: Alternating direction method with self-adaptive penalty parameters for monotone variational inequalities. J. Optim. Theory Appl.106(2), 337–356 (2000). doi:10.1023/A:1004603514434
Lin, Z., Liu, R., Su, Z.: Linearized alternating direction method with adaptive penalty for low rank representation. In: Proceedings of Advances in Neural Information Processing Systems, pp. 612–620 (2011)
Gross, D.: Recovering low-rank matrices from few coefficients in any basis. IEEE Trans. Inf. Theory57(3), 1548–1566 (2011). doi:10.1109/TIT.2011.2104999
Wright, J., Ganesh, A., Min, K., Ma, Y.: Compressive principal component pursuit. J. IMA2, 32–68 (2013)
Yuan, X.M., Yang, J.: Sparse and low-rank matrix decomposition via alternating direction methods. Pac. J. Optim. (2009)
Li, K., Cong, S.: A robust compressive quantum state tomography algorithm using admm. In: The 19th World Congress of the International Federation of Automatic Control, pp. 6878–6883 (2014)
Cong S., Z.H., K., L.: An improved quantum state estimation algorithm via compressive sensing. In: 2014 IEEE international conference on Robio and Biomimetics, 5–10, pp. 2238–2343 (2014)
Recht, B., Fazel, M., Parillo, P.: Guaranteed minimum rank solution of matrix equations via nuclear norm minimization. SIAM Rev.52, 471–501 (2007)
Zyczkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys.52(6), 062201 (2011)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge, U.K. (2004)
Candés, E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM58(3), 1–37 (2011)
Candès, E., Romberg, J.: Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math.6(8), 227–254 (2006)
Candès, E., Romberg, J.: Sparsity and incoherence in compressive sampling. Inverse Probl.23, 969–985 (2007)
Sturm, J.F.: Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim. Methods Softw.11–12, 625–653 (1999)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (61573330).
Author information
Authors and Affiliations
Department of Automation, University of Science and Technology of China, Hefei, 230027, People’s Republic of China
Kezhi Li, Hui Zhang, Sen Kuang & Shuang Cong
Imperial College London, London, UK
Kezhi Li
Hefei Uinversity, Hefei, 230022, People’s Republic of China
Fangfang Meng
- Kezhi Li
You can also search for this author inPubMed Google Scholar
- Hui Zhang
You can also search for this author inPubMed Google Scholar
- Sen Kuang
You can also search for this author inPubMed Google Scholar
- Fangfang Meng
You can also search for this author inPubMed Google Scholar
- Shuang Cong
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toShuang Cong.
Appendix
Appendix
Definition 1
(Rank RIP) [14,23] The\(\mathcal {A}\) satisfies the rank-restricted isometry property (RIP) if for all\(d \times d\)\(\mathbf{X}\), we have
where some constant\(0 < \delta <1\).
Rights and permissions
About this article
Cite this article
Li, K., Zhang, H., Kuang, S.et al. An improved robust ADMM algorithm for quantum state tomography.Quantum Inf Process15, 2343–2358 (2016). https://doi.org/10.1007/s11128-016-1288-x
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative