Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Trojan horse attack free fault-tolerant quantum key distribution protocols

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This work proposes two quantum key distribution (QKD) protocols—each of which is robust under one kind of collective noises—collective-dephasing noise and collective-rotation noise. Due to the use of a new coding function which produces error-robust codewords allowing one-time transmission of quanta, the proposed QKD schemes are fault-tolerant and congenitally free from Trojan horse attacks without having to use any extra hardware. Moreover, by adopting two Bell state measurements instead of a 4-GHZ state joint measurement for decoding, the proposed protocols are practical in combating collective noises.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Presented at the Proceedings of IEEE International Conference on Computers Systems and Signal Processing Bangalore, India (1984)

  2. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100% qubit efficiency. IET Inf. Secur.1(1), 43–45 (2007)

    Article  Google Scholar 

  3. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE T Depend. Secur.4(1), 71–80 (2007)

    Article MathSciNet  Google Scholar 

  4. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D Atomic Mol. Opti. Plasma Phys.61(3), 785–790 (2011)

    Google Scholar 

  5. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum15(6), 1602–1606 (2009)

    Article  Google Scholar 

  6. Zhang, Z.J., Man, Z.X., Shi, S.H.: An efficient multiparty quantum key distribution scheme. Int. J. Quantum Inf.3(3), 555–560 (2005)

    Article MATH  Google Scholar 

  7. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett.21(11), 2097–2100 (2004)

    Article ADS  Google Scholar 

  8. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett.85(2), 441–444 (2000)

    Article ADS  Google Scholar 

  9. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science283(5410), 2050–2056 (1999)

    Article ADS  Google Scholar 

  10. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol.5(1), 3–28 (1992)

    Article MATH  Google Scholar 

  11. Hughes, R., Luther, G., Morgan, G., Peterson, C., Simmons, C.: Quantum cryptography over underground optical fibers. Presented at the Advances in Cryptology—CRYPTO ’96, 16th Annual International Cryptology Conference Proceedings, Santa Barbara, California, USA (August 18–22, 1996)

  12. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett.79(17), 3306 (1997)

    Article ADS  Google Scholar 

  13. Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A78(2), 022321 (2008)

    Article ADS  Google Scholar 

  14. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett.92(1), 017901 (2004)

    Article ADS  Google Scholar 

  15. Sun, Y., Wen, Q.Y., Gao, F., Zhu, F.C.: Robust variations of the Bennett–Brassard 1984 protocol against collective noise. Phys. Rev. A80(3), 032321 (2009)

    Article ADS  Google Scholar 

  16. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum key distribution protocols with six-photon states against collective noise. Opt. Commun.282(20), 4171–4174 (2009)

    Article ADS  Google Scholar 

  17. Li, X.H., Zhao, B.K., Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Fault tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantam Inf.7(8), 1479–1489 (2009)

    Article MATH  Google Scholar 

  18. Li, C.Y., Li, Y.S.: Fault-tolerate quantum key distribution over a collective-noise channel. Int. J. Quantam Inf.8(7), 1101–1109 (2010)

    Article MATH  Google Scholar 

  19. Cabello, A.: Six-qubit permutation-based decoherence-free orthogonal basis. Phys. Rev. A75(2), 020301 (2007)

    Article MathSciNet ADS  Google Scholar 

  20. Zhang, Z.J.: Robust multiparty quantum secret key sharing over two collective-noise channels. Phys. A361(1), 233–238 (2006)

    Article ADS  Google Scholar 

  21. Sun, Y., Wen, Q.Y., Zhu, F.C.: Improving the multiparty quantum secret sharing over two collective-noise channels against insider attack. Opt. Commun.283(1), 181–183 (2010)

    Article ADS  Google Scholar 

  22. Gu, B., Mu, L.L., Ding, L.G., Zhang, C.Y., Li, C.Q.: Fault tolerant three-party quantum secret sharing against collective noise. Opt. Commun.283(15), 3099–3103 (2010)

    Article ADS  Google Scholar 

  23. Yang, C.-W., Tsai, C.-W., Hwang, T.: Thwarting intercept-and-resend attack on Zhang’s quantum secret sharing using collective rotation noises. Quantum Inf. Process.11(1), 113–122 (2012)

    Article MathSciNet MATH  Google Scholar 

  24. Yang, C.-W., Tsai, C.-W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China Phys.54(3), 496–501 (2011)

    Article  Google Scholar 

  25. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Throe. Phys.51(12), 3941–3950 (2012)

    Article MathSciNet MATH  Google Scholar 

  26. Yang, C.-W., Hwang, T.: Quantum dialogue protocols immune to collective noise. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0514-4

    MathSciNet  Google Scholar 

  27. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A351(1–2), 23–25 (2006)

    Article ADS MATH  Google Scholar 

  28. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A72(4), 044302 (2005)

    Article ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack (vol 72, art no 044302, 2005). Phys. Rev. A73(4), 049901 (2006)

    Article ADS  Google Scholar 

  30. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A74(5), 054302 (2006)

    Article ADS  Google Scholar 

  31. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “Quantum Blind Signature Based on Two-State Vector Formalism”. Quantum Inf. Process.12(1), 109–117 (2013)

    Article MathSciNet ADS MATH  Google Scholar 

  32. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE T Inf. Theory41(6), 1915–1923 (1995)

    Article MathSciNet MATH  Google Scholar 

  33. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy Amplification by Public Discussion. Siam J Comput17(2), 210–229 (1988)

    Article MathSciNet  Google Scholar 

  34. Hwang, T., Hwang, C.-C., Yang, C.-W., Li, C.-M.: Revisiting Deng et al’.s Multiparty Quantum Secret Sharing Protocol. Int. J. Throe. Phys. 50(9), 2790–2798 (2011).

    Google Scholar 

Download references

Acknowledgments

This research is supported by the National Science Council, Taiwan, R.O.C., under the Contract No. NSC 100-2221-E-006-152-MY3.

Author information

Authors and Affiliations

  1. Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City , 70101, ROC, Taiwan

    Chun-Wei Yang & Tzonelih Hwang

Authors
  1. Chun-Wei Yang

    You can also search for this author inPubMed Google Scholar

  2. Tzonelih Hwang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toTzonelih Hwang.

Rights and permissions

About this article

Cite this article

Yang, CW., Hwang, T. Trojan horse attack free fault-tolerant quantum key distribution protocols.Quantum Inf Process13, 781–794 (2014). https://doi.org/10.1007/s11128-013-0689-3

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp