464Accesses
40Citations
1Altmetric
Abstract
We show that the problem of designing a quantum information processing error correcting procedure can be cast as a bi-convex optimization problem, iterating between encoding and recovery, each being a semidefinite program. For a given encoding operator the problem is convex in the recovery operator. For a given method of recovery, the problem is convex in the encoding scheme. This allows us to derive new codes that are locally optimal. We present examples of such codes that can handle errors which are too strong for codes derived by analogy to classical error correction techniques.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alicki R., Lidar D.A., Zanardi P.: Internal consistency of fault-tolerant quantum error correction in light of rigorous derivations of the quantum markovian limit. Phys. Rev. A73, 052311 (2005)
Boyd S., Vandenberghe L.: Convex Optimization. Cambridge University Press, Cambridge (2004)
Byrd M.S., Lidar D.A.: Empirical determination of bang-bang operations. Phys. Rev. A67, 012324 (2003)
Fletcher A.S., Shor P.W., Win M.Z.: Optimum quantum error recovery using semidefinite programming. Phys. Rev. A75, 012338 (2007)
Gilchrist A., Langford N.K., Nielsen M.A.: Distance measures to compare real and ideal quantum processes. Phys. Rev. A71, 062310 (2005)
Golub G.H., Van Loan C.F.: Matrix Computations. Johns Hopkins University Press, Maryland (1983)
Gottesman D.: Class of quantum error-correcting codes saturating the quantum hamming bound. Phys. Rev. A54, 1862 (1996)
Knill E., Laflamme R.: Theory of quantum error-correcting codes. Phys. Rev. A55(2), 900 (1997)
Kosut, R.L., Grace, M., Brif, C., Rabitz, H.: On the distance between unitary propagators of quantum systems of differing dimensions. Eprint. quant-ph/0606064
Kosut R.L., Shabani A., Lidar D.A.: Robust quantum error correction via convex optimization. Phys. Rev. Lett.100, 020502 (2008)
Kosut, R.L., Walmsley, I.A., Rabitz, H.: Optimal experiment design for quantum state and process tomography and hamiltonian parameter estimation. Eprint. quant-ph/0411093. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum process tomography: resource analysis of different strategies. Phys. Rev. A77, 032322 (2008)
Lida, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett.81, 2594 (1998). Shabani, A., Lidar, D.A.: Theory of initialization-free decoherence-free subspaces and subsystems. Phys. Rev. A72, 043203 (2005)
Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Reimpell M., Werner R.F.: Iterative optimization of quantum error correcting codes. Phys. Rev. Lett.94, 080501 (2005)
Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A52, R2493 (1995)
Steane A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett.77, 793 (1996)
Yamamoto N., Hara S., Tsumara K.: Suboptimal quantum error correcting procedure based on semidefinite programming. Phys. Rev. A71, 022322 (2005)
Zanardi P., Lidar D.A.: Purity and state fidelity of quantum channels. Phys. Rev. A70, 012315 (2004)
Author information
Authors and Affiliations
SC Solutions, Sunnyvale, CA, 94085, USA
Robert L. Kosut
Departments of Chemistry, Electrical Engineering, and Physics, Center for Quantum Information Science & Technology, University of Southern California, Los Angeles, CA, 90089, USA
Daniel A. Lidar
- Robert L. Kosut
You can also search for this author inPubMed Google Scholar
- Daniel A. Lidar
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toRobert L. Kosut.
Rights and permissions
About this article
Cite this article
Kosut, R.L., Lidar, D.A. Quantum error correction via convex optimization.Quantum Inf Process8, 443–459 (2009). https://doi.org/10.1007/s11128-009-0120-2
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative