Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Chain Blockers and Convoluted Catalan Numbers

  • Published:
Order Aims and scope Submit manuscript

Abstract

We give new interpretations of Catalan and convoluted Catalan numbers in terms of trees and chain blockers. For a posetP we say that a subsetAP is a chain blocker if it is an inclusionwise minimal subset ofP that contains at least one element from every maximal chain. In particular, we study the set of chain blockers for the class of posetsP =Ca ×Cb whereCi is the chain 1 < ⋯ <i. We show that subclasses of these chain blockers are counted by Catalan and convoluted Catalan numbers.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Article15 November 2017

Article25 January 2021

References

  1. Catalan, E.: Sur les nombres de Segner. Rend. Circ. Mat. Palermo1, 190–201 (1887)

    Article MATH  Google Scholar 

  2. Foldes, S., Woodroofe, R.: Antichain cutsets of strongly connected posets. Order30, 351–361 (2013)

    Article MathSciNet MATH  Google Scholar 

  3. Regev, A.: A proof of Catalan’s convolution formula. Integers12, #A29 (2012)

    Article MathSciNet MATH  Google Scholar 

  4. Rival, I., Zaguia, N.: Antichain cutsets. Order1, 235247 (1985)

    Article MathSciNet MATH  Google Scholar 

  5. Stanley, R.P.: Catalan Numbers. Cambridge University Press, Cambridge (2015)

    Book MATH  Google Scholar 

  6. Tedfordm, S.J.: Combinatorial interpretations of convolutions of the Catalan numbers. Integers11, #A3 (2011)

    MathSciNet MATH  Google Scholar 

  7. West, J.: Generating trees and the Catalan and Schröder numbers. Discret. Math.146, 247–262 (1995)

    Article MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. COMSATS Institute of Information Technology, Lahore, Pakistan

    Sarfraz Ahmad

  2. Fachbereich Mathematik und Informatik, Philipps-Universität Marburg, 35032, Marburg, Germany

    Volkmar Welker

Authors
  1. Sarfraz Ahmad

    You can also search for this author inPubMed Google Scholar

  2. Volkmar Welker

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSarfraz Ahmad.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp