- Muhammad Tanveer Jan ORCID:orcid.org/0000-0002-3870-05261,
- Christian Garbin1,2,
- Johannes Ruetschi2,
- Oge Marques1 &
- …
- Hari Kalva1
181Accesses
Abstract
Telehealth adoption accelerated in the past few years. Telehealth can be offered via simple video consultations or in more complex environments with doctors remotely assisting an operation or remote intensive care unit (ICU) support through a video feed. In these complex settings, it is essential for the doctors joining remotely to understand the remote environment quickly. The most critical information is identifying the patient’s location, which may not be immediately apparent in an operating room or ICU busy with equipment and other clinicians. In this paper, we trained object detection models to find the bounding box of patients in such complex hospital environments using a relatively small number of images (for an object detection task) from standard video cameras without depth or other information beyond a regular image. The best model achieves a high precision-recall area under the curve for this task, even when trained with a small dataset. We describe the process to identify the best model, considerations to deploy the model, and suggest improvements for future work.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.










Similar content being viewed by others
Data Availibility
The dataset used in this study is publicly available athttps://github.com/CAMMA-public/mvor.
References
Alsaidi M, Altaher AS, Jan MT, Altaher A, Salekshahrezaee Z (2022) COVID-19 Classification Using Deep Learning Two-Stage Approach. [cs, eess].https://doi.org/10.48550/arXiv.2211.15817 .http://arxiv.org/abs/2211.15817. Accessed 07 Dec 2023
Shaver J (2022) The State of Telehealth Before and After the COVID-19 Pandemic. Prim Care 49(4):517–530.https://doi.org/10.1016/j.pop.2022.04.002. Accessed 23 Jan 2023
Health Resources and Services Administration (2022) What is telehealth? | Telehealth.HHS.gov.https://telehealth.hhs.gov/patients/understanding-telehealth/. Accessed 31 Jan 2023
Ofoma UR, Maddox TM, Perera C, Waken RJ, Drewry AM, Liu L, Boyle W, Kollef M, Joynt Maddox KE (2021) Characteristics of U.S. Acute Care Hospitals That Have Implemented Telemedicine Critical Care. Crit Care Explor 3(7):0468.https://doi.org/10.1097/CCE.0000000000000468. Accessed 23 Jan 2023
Hata, J.S.: Telemedicine/Virtual ICU: Where Are We and Where Are We Going?14(2), 126 (2018)https://doi.org/10.14797/mdcj-14-2-126 . Number: 2 Publisher: Houston Methodist DeBakey Heart & Vascular Center. Accessed 31 Jan 2023
U.S. Department of Veteran Affairs (2022) Bay Pines VA Implements TeleCritical Care in ICU | VA Bay Pines health care.https://www.va.gov/bay-pines-health-care/news-releases/bay-pines-va-implements-telecritical-care-in-icu/. Accessed 24 Jan 2023
Madani A, Hirpara D, Chadi SA, Dhar P, Okrainec A (2021) Leveraging Videoconferencing Technology to Augment Surgical Training During a Pandemic. Ann Surg Open 2(2):035.https://doi.org/10.1097/AS9.0000000000000035. Accessed 01 July 2023
Defense Visual Information Distribution Service (2015) The online doc is in... Lt. Cmdr. Josephine Nguyen.https://nara.getarchive.net/media/the-online-doc-is-in-lt-cmdr-josephine-nguyen-fc81a2. Accessed 29 Jan 2023
Srivastav V, Issenhuth T, Kadkhodamohammadi A, Mathelin M, Gangi A, Padoy N (2021) MVOR: A Multi-view RGB-D Operating Room Dataset for 2D and 3D Human Pose Estimation. [cs].https://doi.org/10.48550/arXiv.1808.08180 .http://arxiv.org/abs/1808.08180. Accessed 01 Feb 2023
Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol 1.https://doi.org/10.1109/CVPR.2001.990517 . ISSN: 1063-6919
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: 2005 IEEE Computer society conference on computer vision and pattern recognition (CVPR’05), vol 1. pp 886–8931.https://doi.org/10.1109/CVPR.2005.177 . ISSN: 1063-6919
Zou Z, Chen K, Shi Z, Guo Y, Ye J (2023) Object Detection in 20 Years: a Survey. Proc IEEE 111(3):257–276.https://doi.org/10.1109/JPROC.2023.3238524. Conference Name: Proceedings of the IEEE
Girshick R, Donahue J, Darrell T, Malik J (2014) Rich feature hierarchies for accurate object detection and semantic segmentation. [cs].https://doi.org/10.48550/arXiv.1311.2524 .http://arxiv.org/abs/1311.2524. Accessed 13 Feb 2023
Girshick R (2015) Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV). pp 1440–1448.https://doi.org/10.1109/ICCV.2015.169 . ISSN: 2380-7504
Ren S, He K, Girshick R, Sun, J (2015) Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in neural information processing systems, vol 28. Curran Associates, Inc.https://papers.nips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html. Accessed 20 Mar 2023
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection, pp 779–788 (2016).https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html. Accessed 13 Feb 2023
Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) SSD: Single Shot MultiBox Detector, vol 9905. pp 21–37.https://doi.org/10.1007/978-3-319-46448-0_2. arXiv:1512.02325 [cs].http://arxiv.org/abs/1512.02325. Accessed 13 Feb 2023
Sharma V, Mir RN (2020) A comprehensive and systematic look up into deep learning based object detection techniques: a review. Comput Sci Rev 38:100301.https://doi.org/10.1016/j.cosrev.2020.100301. Accessed 15 Feb 2023
Wong K-Y (2023) YOLOv7 hyperparameters from scratch. original-date: 2022-07-06T15:14:06Z.https://github.com/WongKinYiu/yolov7/blob/2fdc7f14395f6532ad05fb3e6970150a6a83d290/data/hyp.scratch.custom.yaml. Accessed 28 Feb 2023
Redmon J, Farhadi A (2017) YOLO9000: Better, Faster, Stronger. pp 7263–7271.https://openaccess.thecvf.com/content_cvpr_2017/html/Redmon_YOLO9000_Better_Faster_CVPR_2017_paper.html. Accessed 13 Feb 2023
Redmon J, Farhadi A (2018) YOLOv3: An Incremental Improvement. arXiv. arXiv:1804.02767 [cs].https://doi.org/10.48550/arXiv.1804.02767 .http://arxiv.org/abs/1804.02767. Accessed 13 Feb 2023
Bochkovskiy A, Wang C-Y, Liao H-YM (2020) YOLOv4: Optimal Speed and Accuracy of Object Detection. [cs, eess].https://doi.org/10.48550/arXiv.2004.10934 .http://arxiv.org/abs/2004.10934. Accessed 13 Feb 2023
Jocher G, Chaurasia A, Stoken A, Borovec J, NanoCode012, Kwon Y, Michael K, TaoXie, Fang J, imyhxy, Lorna, Yifu Z, Wong C, Abhiram V, Montes D, Wang Z, Fati C, Nadar J, Laughing, UnglvKitDe, Sonck V, tkianai, yxNONG, Skalski P, Hogan A, Nair D, Strobel M, Jain M (2022) ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation. Zenodo.https://doi.org/10.5281/zenodo.7347926 .https://zenodo.org/record/7347926. Accessed 13 Feb 2023
Jocher G, Chaurasia A, Qiu J (2023) YOLO by Ultralytics. original-date: 2022-09-11T16:39:45Z.https://github.com/ultralytics/ultralytics. Accessed 15 Feb 2023
Jan MT, Hashemi A, Jang J, Yang K, Zhai J, Newman D, Tappen R, Furht B (2013) Non-intrusive drowsiness detection techniques and their application in detecting early dementia in older drivers. In: Arai K (ed) Proceedings of the future technologies conference (FTC) 2022, vol 2. Lecture Notes in Networks and Systems. Springer, Cham, pp 776–796.https://doi.org/10.1007/978-3-031-18458-1_53
Jan MT, Moshfeghi S, Conniff JW, Jang J, Yang K, Zhai J, Rosselli M, Newman D, Tappen R, Furht B (2022) Methods and Tools for Monitoring Driver’s Behavior. In: 2022 International conference on computational science and computational intelligence (CSCI). IEEE, Las Vegas, pp 1269–1273.https://doi.org/10.1109/CSCI58124.2022.00228 .https://ieeexplore.ieee.org/document/10216710/. Accessed 07 Dec 2023
Moshfeghi S, Jan MT, Conniff J, Ghoreishi, SGA, Jang J, Furht B, Yang K, Rosselli, M, Newman, D., Tappen, R, Smith, D (2023) In: Vehicle sensing and data analysis for older drivers with mild cognitive impairment. [cs].https://doi.org/10.48550/arXiv.2311.09273 .http://arxiv.org/abs/2311.09273. Accessed 07 Dec 2023
Ghoreishi SGA, Moshfeghi S, Jan MT, Conniff J, Yang K, Jang J, Furht B, Tappen R, Newman D, Rosselli M, Zhai J (2023) Anomalous Behavior Detection in Trajectory Data of Older Drivers. [cs].https://doi.org/10.48550/arXiv.2311.17822 .http://arxiv.org/abs/2311.17822. Accessed 07 Dec 2023
Li L, Huang W, Gu IYH, Tian Q (2003) Foreground object detection from videos containing complex background. In: Proceedings of the eleventh acm international conference on multimedia. MULTIMEDIA ’03. pp 2–10. Association for Computing Machinery, New York.https://doi.org/10.1145/957013.957017 . Accessed 02 July 2023
Chen Q, Liu T, Shang Y, Shao Z, Ding H (2019) Salient object detection: integrate salient features in the deep learning framework. IEEE Access 7:152483–152492.https://doi.org/10.1109/ACCESS.2019.2948062. Conference Name: IEEE Access
Zhu D, Xu G, Zhou J, Di E, Li M (2021) Object detection in complex road scenarios: improved YOLOv4-tiny algorithm. In: 2021 2nd Information communication technologies conference (ICTC). pp 75–80.https://doi.org/10.1109/ICTC51749.2021.9441643
Tao T, Dong D, Huang S, Chen W, Yang L (2020) Object detection-based license plate localization and recognition in complex environments. Transp Res Rec 2674(12):212–223.https://doi.org/10.1177/0361198120954202. Publisher: SAGE Publications Inc. Accessed 02 July 2023
Zhang C, Kang F, Wang Y (2022) An improved apple object detection method based on lightweight YOLOv4 in complex backgrounds. Remote Sens 14(17):4150.https://doi.org/10.3390/rs14174150. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute. Accessed 02 July 2023
Chun LZ, Dian L, Zhi JY, Jing W, Zhang C (2020) YOLOv3: face detection in complex environments. Int J Comput Intell Syst 13(1):1153–1160.https://doi.org/10.2991/ijcis.d.200805.002. Publisher: Atlantis Press. Accessed 02 July 2023
Ma AJ, Rawat N, Reiter A, Shrock C, Zhan A, Stone A, Rabiee A, Griffin S, Needham DM, Saria S (2017) Measuring patient mobility in the icu using a novel noninvasive sensor. Crit Care Med 45(4):630.https://doi.org/10.1097/CCM.0000000000002265
Yeung S, Rinaldo F, Jopling J, Liu B, Mehra R, Downing NL, Guo M, Bianconi GM, Alahi A, Lee J, Campbell B, Deru K, Beninati W, Fei-Fei L, Milstein A (2019) A computer vision system for deep learning-based detection of patient mobilization activities in the ICU. NPJ Digit Med 2(1), 1–5 (2019)https://doi.org/10.1038/s41746-019-0087-z. Number: 1 Publisher: Nature Publishing Group. Accessed 23 Jan 2023
Reiter A, Ma A, Rawat N, Shrock C, Saria S (2016) Process Monitoring in the Intensive Care Unit: Assessing Patient Mobility Through Activity Analysis with a Non-Invasive Mobility Sensor. In: Ourselin S, Joskowicz L, Sabuncu MR, Unal G, Wells W (eds) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. Lecture Notes in Computer Science. Springer, Cham, pp 482–490.https://doi.org/10.1007/978-3-319-46720-7_56 .https://link.springer.com/chapter/10.1007/978-3-319-46720-7_56
European Union (2016) Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance). Legislative Body: EP, CONSIL.http://data.europa.eu/eli/reg/2016/679/oj/eng. Accessed 20 Mar 2023
Sen. Kassebaum, Nancy Landon [R-KS] (1996) S.1028 - 104th Congress (1995-1996): Health Insurance Reform Act of 1995. Archive Location: 04/23/1996.http://www.congress.gov/. Accessed 20 Mar 2023
Alsaidi M, Jan MT, Altaher A, Zhuang H, Zhu X (2023) Tackling the class imbalanced dermoscopic image classification using data augmentation and GAN. Multimed Tools Appl.https://doi.org/10.1007/s11042-023-17067-1. Accessed 24 Nov 2023
Lin T-Y, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P (2015) Microsoft COCO: Common Objects in Context. [cs].https://doi.org/10.48550/arXiv.1405.0312 .http://arxiv.org/abs/1405.0312. Accessed 24 Feb 2023
Padilla R, Passos WL, Dias TLB, Netto SL, Silva EAB (2021) A Comparative Analysis of Object Detection Metrics with a Companion Open-Source Toolkit. Electronics 10(3):279.https://doi.org/10.3390/electronics10030279. Number: 3 Publisher: Multidisciplinary Digital Publishing Institute. Accessed 14 Feb 2023
Kasper-Eulaers M, Hahn N, Berger S, Sebulonsen T, Myrland O, Kummervold PE (2021) Short Communication: Detecting Heavy Goods Vehicles in Rest Areas in Winter Conditions Using YOLOv5. Algorithms 14(4):114.https://doi.org/10.3390/a14040114. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute. Accessed 10 Feb 2023
Wu B, Pang C, Zeng X, Hu X (2022) ME-YOLO: Improved YOLOv5 for detecting medical personal protective equipment. Appl Sci 12(23):11978.https://doi.org/10.3390/app122311978. Number: 23 Publisher: Multidisciplinary Digital Publishing Institute. Accessed 10 Feb 2023
Wang C-Y, Bochkovskiy A, Liao H-YM (2021) Scaled-YOLOv4: scaling cross stage partial network. In: 2021 IEEE/CVF Conference on computer vision and pattern recognition (CVPR). pp 13024–13033.https://doi.org/10.1109/CVPR46437.2021.01283 . ISSN: 2575-7075
Karpathy A (2019) A recipe for training neural networks.http://karpathy.github.io/2019/04/25/recipe/. Accessed 22 Feb 2023
Godbole V, Dahl GE, Gilmer J, Shallue CJ, Nado Z (2023) Deep Learning Tuning Playbook. Google Research. original-date: 2023-01-18T23:32:32Z.https://github.com/google-research/tuning_playbook. Accessed 22 Feb 2023
Yosinski J, Clune J, Bengio Y, Lipson H (2014) How transferable are features in deep neural networks? | Proceedings of the 27th international conference on neural information processing systems - vol 2.https://dl.acm.org/doi/10.5555/2969033.2969197. Accessed 24 Feb 2023
Jocher G (2021) YOLOv5 Study: mAP vs Batch-Size\(\cdot \) Discussion #2452\(\cdot \) ultralytics/yolov5.https://github.com/ultralytics/yolov5/discussions/2452. Accessed 23 Feb 2023
Wong K-Y (2023) Official YOLOv7. original-date: 2022-07-06T15:14:06Z.https://github.com/WongKinYiu/yolov7. Accessed 22 Feb 2023
Wong K-Y (2023) YOLOv7 hyperparameters P5 model. original-date: 2022-07-06T15:14:06Z.https://github.com/WongKinYiu/yolov7/blob/2fdc7f14395f6532ad05fb3e6970150a6a83d290/data/hyp.scratch.p5.yaml. Accessed 28 Feb 2023
Zhang H, Cisse M, Dauphin YN, Lopez-Paz D (2018) mixup: Beyond Empirical Risk Minimization. [cs, stat].https://doi.org/10.48550/arXiv.1710.09412.http://arxiv.org/abs/1710.09412. Accessed 28 Feb 2023
Raghu M, Zhang C, Kleinberg J, Bengio S (2019) Transfusion: Understanding Transfer Learning for Medical Imaging. [cs, stat].https://doi.org/10.48550/arXiv.1902.07208.http://arxiv.org/abs/1902.07208. Accessed 26 Feb 2023
Glenn J (2022) Multi-GPU Training\(\cdot \) Issue #475\(\cdot \) ultralytics/yolov5.https://github.com/ultralytics/yolov5/issues/475. Accessed 27 Feb 2023
Ultralytics (2022) yolov7/metrics.py at 55b90e111984dd85e7eed327e9ff271222aa8b82\(\cdot \) WongKinYiu/yolov7.https://github.com/WongKinYiu/yolov7/blob/55b90e111984dd85e7eed327e9ff271222aa8b82/utils/metrics.py. Accessed 27 Feb 2023
Glenn J (2020) Hyperparameter Evolution\(\cdot \) Issue #607\(\cdot \) ultralytics/yolov5.https://github.com/ultralytics/yolov5/issues/607. Accessed 27 Feb 2023
Chen JYC, Thropp JE (2007) Review of low frame rate effects on human performance. IEEE Trans Syst Man Cybern Part A: Syst Hum 37(6):1063–1076.https://doi.org/10.1109/TSMCA.2007.904779. Conference Name: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
Mokari H, Firouzmand E, Sharifi I, Doustmohammadi A (2023) Resilient control strategy and attack detection on platooning of smart vehicles under DoS attack. ISA Trans.https://doi.org/10.1016/j.isatra.2023.11.019. Accessed 24 Nov 2023
Mokari H, Firouzmand E, Sharifi I, Doustmohammadi A (2022) Deception attack detection and resilient control in platoon of smart vehicles. In: 2022 30th International conference on electrical engineering (ICEE). pp 29–35.https://doi.org/10.1109/ICEE55646.2022.9827376 . ISSN: 2642-9527.https://ieeexplore.ieee.org/abstract/document/9827376?casa_token=cPr3BZs34EEAAAAA:uxKVNf--S2iR-6xCCaEtDigZX0ueATmcFCmijPpUCdZmcpJacRI3KjXbld088rIxick5i6yHaw. Accessed 24 Nov 2023
Author information
Authors and Affiliations
Department of Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, 33431, FL, USA
Muhammad Tanveer Jan, Christian Garbin, Oge Marques & Hari Kalva
Atos Unify, Boca Raton, 33431, FL, USA
Christian Garbin & Johannes Ruetschi
- Muhammad Tanveer Jan
You can also search for this author inPubMed Google Scholar
- Christian Garbin
You can also search for this author inPubMed Google Scholar
- Johannes Ruetschi
You can also search for this author inPubMed Google Scholar
- Oge Marques
You can also search for this author inPubMed Google Scholar
- Hari Kalva
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toMuhammad Tanveer Jan.
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jan, M., Garbin, C., Ruetschi, J.et al. Automated patient localization in challenging hospital environments.Multimed Tools Appl83, 63439–63457 (2024). https://doi.org/10.1007/s11042-024-18118-x
Received:
Revised:
Accepted:
Published:
Issue Date: