Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Matrix Optimization Over Low-Rank Spectral Sets: Stationary Points and Local and Global Minimizers

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider matrix optimization with the variable as a matrix that is constrained into a low-rank spectral set, where the low-rank spectral set is the intersection of a low-rank set and a spectral set. Three typical spectral sets are considered, yielding three low-rank spectral sets. For each low-rank spectral set, we first calculate the projection of a given point onto this set and the formula of its normal cone, based on which the induced stationary points of matrix optimization over low-rank spectral sets are then investigated. Finally, we reveal the relationship between each stationary point and each local/global minimizer.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

ArticleOpen access18 February 2023

Notes

  1. A set\(\mathcal {K}\in \mathbb {R}^n\) is said to be symmetric if\(Px\in \mathcal {K}\) for every\(x\in \mathcal {K}\) and every\(P\in \mathbb {P}^n\), where\(\mathbb {P}^n\) denotes the set of all\(n\times n\) permutation matrices. ( For those matrices, that have only one nonzero entry in every row and column, which is 1, see [38].)

References

  1. Recht, B., Fazel, M., Parrilo, P.A.: Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Rev.52(3), 471–501 (2010)

    Article MathSciNet MATH  Google Scholar 

  2. Markovsky, I.: Low Rank Approximation. Springer, London (2012)

    Book MATH  Google Scholar 

  3. Ding, C.: An introduction to a class of matrix optimization problems. Ph.D. thesis, National University of Singapore (2012)

  4. Udell, M., Horn, C., Zadeh, R.B., Boyd, S.P.: Generalized low rank models. Mach. Learn.9(1), 1–118 (2016)

    Article MATH  Google Scholar 

  5. Davenport, M.A., Romberg, J.: An overview of low-rank matrix recovery from incomplete observations. IEEE J. Sel. Top. Signal Process.10(4), 608–622 (2016)

    Article  Google Scholar 

  6. Fazel, M.: Matrix rank minimization with applications. Ph.D. thesis, Stanford University (2002)

  7. Candès, E.J., Tao, T.: The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory56(5), 2053–2080 (2010)

    Article MathSciNet MATH  Google Scholar 

  8. Marjanovic, G., Solo, V.: On\(l_q\) optimization and matrix completion. IEEE Trans. Signal Process.60(11), 5714–5724 (2012)

    Article MathSciNet MATH  Google Scholar 

  9. Mohan, K., Fazel, M.: Iterative reweighted algorithms for matrix rank minimization. J. Mach. Learn. Res.13(Nov), 3441–3473 (2012)

    MathSciNet MATH  Google Scholar 

  10. Nie, F., Wang, H., Cai, X., Huang, H., Ding, C.: Robust matrix completion via joint schatten p-norm and\(l_{p}\)-norm minimization. In: IEEE International Conference on Data Mining, pp. 566–574 (2012)

  11. Chen, Y., Xiu, N., Peng, D.: Global solutions of non-lipschitz\(s_{2}\)-\(s_{p}\) minimization over the positive semidefinite cone. Optim. Lett.8(7), 2053–2064 (2014)

    Article MathSciNet MATH  Google Scholar 

  12. Zhao, Y.B.: An approximation theory of matrix rank minimization and its application to quadratic equations. Linear Algebra Appl.437(1), 77–93 (2012)

    Article MathSciNet MATH  Google Scholar 

  13. Yao, H., Debing, Z., Jieping, Y., Xuelong, L., Xiaofei, H.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell.35(9), 2117–2130 (2013)

    Article  Google Scholar 

  14. Burer, S., Monteiro, R.D.C.: A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization. Math. Program.95(2), 329–357 (2003)

    Article MathSciNet MATH  Google Scholar 

  15. Journée, M., Bach, F., Absil, P.A., Sepulchre, R.: Low-rank optimization on the cone of positive semidefinite matrices. SIAM J. Optim.20(5), 2327–2351 (2010)

    Article MathSciNet MATH  Google Scholar 

  16. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput.4(4), 333–361 (2012)

    Article MathSciNet MATH  Google Scholar 

  17. Jain, P., Netrapalli, P., Sanghavi, S.: Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pp. 665–674. ACM (2013)

  18. Hardt, M.: Understanding alternating minimization for matrix completion. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pp. 651–660. IEEE (2014)

  19. Sun, R., Luo, Z.: Guaranteed matrix completion via non-convex factorization. IEEE Trans. Inf. Theory62(11), 6535–6579 (2016)

    Article MathSciNet MATH  Google Scholar 

  20. Gao, Y.: Structured low rank matrix optimization problems: A penalty approach. Ph.D. thesis, National University of Singapore (2010)

  21. Kim, S.J., Moon, Y.H.: Structurally constrained\({H}_{2}\) and\({H}_{\infty }\) control: a rank-constrained LMI approach. Automatica42(9), 1583–1588 (2006)

    Article MathSciNet MATH  Google Scholar 

  22. Delgado, R.A., Agüero, J.C., Goodwin, G.C.: A rank-constrained optimization approach: application to factor analysis. IFAC Proc. Vol.47(3), 10373–10378 (2014)

    Article  Google Scholar 

  23. Bi, S., Pan, S.: Error bounds for rank constrained optimization problems and applications. Oper. Res. Lett.44(3), 336–341 (2016)

    Article MathSciNet MATH  Google Scholar 

  24. Zhou, S., Xiu, N., Qi, H.: A fast matrix majorization-projection method for penalized stress minimization with box constraints. IEEE Trans. Signal Process.66(16), 4331–4346 (2018)

    Article MathSciNet MATH  Google Scholar 

  25. Luke, D.R.: Prox-regularity of rank constraint sets and implications for algorithms. J. Math. Imaging Vis.47(3), 231–238 (2013)

    Article MathSciNet MATH  Google Scholar 

  26. Rockafellar, R.T., Wets, R.J.: Variational Analysis. Springer, Berlin (1998)

    Book MATH  Google Scholar 

  27. Cason, T.P., Absil, P.A., Dooren, P.V.: Iterative methods for low rank approximation of graph similarity matrices. Linear Algebra Appl.438(4), 1863–1882 (2013)

    Article MathSciNet MATH  Google Scholar 

  28. Schneider, R., Uschmajew, A.: Convergence results for projected line-search methods on varieties of low-rank matrices via łojasiewicz inequality. SIAM J. Optim.25(1), 622–646 (2015)

    Article MathSciNet MATH  Google Scholar 

  29. Zhou, G., Huang, W., Gallivan, K.A., Van Dooren, P., Absil, P.A.: A Riemannian rank-adaptive method for low-rank optimization. Neurocomputing192, 72–80 (2016)

    Article  Google Scholar 

  30. Li, X., Song, W., Xiu, N.: Optimality conditions for rank-constrained matrix optimization. J. Oper. Res. Soc. China7(2), 285–301 (2019)

    Article MathSciNet MATH  Google Scholar 

  31. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica15(2), 215–245 (1995)

    Article MathSciNet MATH  Google Scholar 

  32. Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: International Symposium on Information Processing in Sensor Networks (2004)

  33. Ji, S., Sze, K.F., Zhou, Z., So, M.C., Ye, Y.: Beyond convex relaxation: a polynomial-time non-convex optimization approach to network localization. In: IEEE Infocom (2013)

  34. Borsdorf, R., Higham, N.J., Raydan, M.: Computing a nearest correlation matrix with factor structure. SIAM J. Matrix Anal. Appl.31(5), 2603–2622 (2010)

    Article MathSciNet MATH  Google Scholar 

  35. Higham, N.J.: Computing the nearest correlation matrix a problem from finance. IMA J. Numer. Anal.22(3), 329–343 (2018)

    Article MathSciNet MATH  Google Scholar 

  36. Dukanovic, I., Rendl, F.: Semidefinite programming relaxations for graph coloring and maximal clique problems. Math. Program.109(2–3), 345–365 (2007)

    Article MathSciNet MATH  Google Scholar 

  37. Kalev, A., Kosut, R.L., Deutsch, I.H.: Quantum tomography protocols with positivity are compressed sensing protocols. Nat. Partn. J. Quantum Inf.1(1), 15018 (2015)

    Article  Google Scholar 

  38. Lewis, A.S.: Group invariance and convex matrix analysis. SIAM J. Matrix Anal. Appl.17(4), 927–949 (1996)

    Article MathSciNet MATH  Google Scholar 

  39. Tam, M.K.: Regularity properties of non-negative sparsity sets. J. Math. Anal. Appl.447(2), 758–777 (2017)

    Article MathSciNet MATH  Google Scholar 

  40. Lu, Z., Zhang, Y., Li, X.: Penalty decomposition methods for rank minimization. Optim. Methods Softw.30(3), 531–558 (2015)

    Article MathSciNet MATH  Google Scholar 

  41. Kyrillidis, A.: Rigorous optimization recipes for sparse and low rank inverse problems with applications in data sciences. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (2014)

  42. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory, vol. 330. Springer, Berlin (2006)

    Book  Google Scholar 

  43. Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2012)

    MATH  Google Scholar 

  44. Drusvyatskiy, D., Kempton, C.: Variational analysis of spectral functions simplified. J. Convex Anal.25(1), 119–134 (2018)

    MathSciNet MATH  Google Scholar 

  45. Lu, Z.: Optimization over sparse symmetric sets via a nonmonotone projected gradient method (2015). arXiv preprintarXiv:1509.08581

  46. Pan, L., Xiu, N., Fan, J.: Optimality conditions for sparse nonlinear programming. Sci. China Math.60(5), 1–18 (2017)

    Article MathSciNet MATH  Google Scholar 

  47. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim.23(3), 1480–1509 (2013)

    Article MathSciNet MATH  Google Scholar 

  48. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  49. Pan, L., Zhou, S., Xiu, N., Qi, H.D.: A convergent iterative hard thresholding for nonnegative sparsity optimization. Pac. J. Optim.13(2), 325–353 (2017)

    MathSciNet MATH  Google Scholar 

  50. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Belmont (1999)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (11431002).

Author information

Authors and Affiliations

  1. Department of Applied Mathematics, Beijing Jiaotong University, Beijing, 100044, People’s Republic of China

    Xinrong Li & Naihua Xiu

  2. School of Mathematics, University of Southampton, Southampton, UK

    Shenglong Zhou

Authors
  1. Xinrong Li

    You can also search for this author inPubMed Google Scholar

  2. Naihua Xiu

    You can also search for this author inPubMed Google Scholar

  3. Shenglong Zhou

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXinrong Li.

Additional information

Communicated by Suliman Saleh Al-Homidan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Xiu, N. & Zhou, S. Matrix Optimization Over Low-Rank Spectral Sets: Stationary Points and Local and Global Minimizers.J Optim Theory Appl184, 895–930 (2020). https://doi.org/10.1007/s10957-019-01606-8

Download citation

Keywords

Mathematics Subject Classification

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp