Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Bounds in Multistage Linear Stochastic Programming

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Multistage stochastic programs, which involve sequences of decisions over time, are usually hard to solve in realistically sized problems. Providing bounds for optimal solution may help in evaluating whether it is worth the additional computations for the stochastic program vs. simplified approaches. In this paper we generalize measures from the two-stage case, based on different levels of available information, to the multistage stochastic programming problems. A set of theorems providing chains of inequalities among the new quantities are proved. Numerical results on a case study related to a simple transportation problem illustrate the described relationships.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Avriel, M., Williams, A.C.: The value of information and stochastic programming. Oper. Res.18, 947–954 (1970)

    Article MathSciNet MATH  Google Scholar 

  2. Birge, J.R.: The value of the stochastic solution in stochastic linear programs with fixed recourse. Math. Program.24, 314–325 (1982)

    Article MathSciNet MATH  Google Scholar 

  3. Čížková, J.: Value of information in stochastic programming. Working paper, Department of Probability and Mathematical Statistics, Charles University, Prague (2006)

  4. Hartley, R.: Inequalities for a class of sequential stochastic decision processes. In: Dempster, M.A.H. (ed.) Stochastic Programming, pp. 109–123. Academic Press, London (1980)

    Google Scholar 

  5. Hausch, D.B., Ziemba, W.T.: Bounds on the value of information in uncertain decision problems II. Stochastics10, 181–217 (1983)

    Article MathSciNet MATH  Google Scholar 

  6. Huang, K., Ahmed, S.: The value of multi-stage stochastic programming in capacity planning under uncertainty. Oper. Res.57(4), 893–904 (2009)

    Article MathSciNet MATH  Google Scholar 

  7. Kall, P., Wallace, S.W.: Stochastic Programming. Wiley, Chichester (1994)

    MATH  Google Scholar 

  8. Madansky, A.: Inequalities for stochastic linear programming problems. Manag. Sci.6, 197–204 (1960)

    Article MathSciNet MATH  Google Scholar 

  9. Pflug, G.C.: The value of perfect information as a risk measure. In: Marti, K., Ermoliev, Y., Plug, G.C. (eds.) Dynamic Stochastic Optimization, pp. 275–292. Springer, Berlin (2004)

    Chapter  Google Scholar 

  10. Pflug, G.C., Ruszczyński, A.: Measuring risk for income streams. Comput. Optim. Appl.32, 161–178 (2005)

    Article MathSciNet MATH  Google Scholar 

  11. Ruszczyński, A., Shapiro, A. (eds.): Stochastic Programming. Series Handbooks in Operations Research and Management Science, vol. 3. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  12. Shapiro, A.: Stochastic programming approach to optimization under uncertainty. Math. Program., Ser. B112(1), 183–220 (2008)

    Article MATH  Google Scholar 

  13. Shapiro, A., Dencheva, D., Ruszczyński, A.: In: Lectures on Stochastic Programming: Modeling and Theory. MPS-SIAM Series on Optimization (2009)

    Chapter  Google Scholar 

  14. Maggioni, F., Wallace, W.S.: Analyzing the quality of the expected value solution in stochastic programming. Ann. Oper. Res.200(1), 37–54 (2012)

    Article MathSciNet MATH  Google Scholar 

  15. Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011)

    Book MATH  Google Scholar 

  16. Escudero, L.F., Garín, A., Merino, M., Pérez, G.: The value of the stochastic solution in multistage problems. Top15, 48–64 (2007)

    Article MathSciNet MATH  Google Scholar 

  17. Wagner, J.M., Berman, O.: Models for planning capacity expansion of convenience stores under uncertain demand and the value of information. Ann. Oper. Res.59, 19–44 (1995)

    Article MathSciNet MATH  Google Scholar 

  18. Maggioni, F., Kaut, M., Bertazzi, L.: Stochastic Optimization models for a single-sink transportation problem. Comput. Manag. Sci.6, 251–267 (2009)

    Article MathSciNet MATH  Google Scholar 

  19. Raiffa, H., Schlaifer, R.: Applied Statistical Decision Theory, pp. 88–92. Harvard Business School, Boston (1961)

    Google Scholar 

  20. Gunderson, H.S., Morris, J.G., Thompson, H.E.: Stochastic programming with recourse: a modification from an applications viewpoint. J. Oper. Res. Soc.29(8), 769–778 (1978)

    Article MATH  Google Scholar 

  21. Vespucci, M.T., Maggioni, F., Bertocchi, M.I., Innorta, M.: A stochastic model for the daily coordination of pumped storage hydro plants and wind power plants. Ann. Oper. Res.193, 91–105 (2012)

    Article MathSciNet MATH  Google Scholar 

Download references

Acknowledgements

The work has been supported under grant by Regione Lombardia: “Metodi di integrazione delle fonti energetiche rinnovabili e monitoraggio satellitare dell’impatto ambientale”, EN-17, ID 17369.10 and by Bergamo and Brescia University grants 2010–2011.

We thank the referees for their helpful comments that improved the quality of the paper.

Author information

Authors and Affiliations

  1. Department of Management, Economics and Quantitative Methods, Bergamo University, Via dei Caniana 2, 24127, Bergamo, Italy

    Francesca Maggioni & Marida Bertocchi

  2. Department of Economics and Management, Brescia University, Contrada S. Chiara 50, Brescia, 25122, Italy

    Elisabetta Allevi

Authors
  1. Francesca Maggioni

    You can also search for this author inPubMed Google Scholar

  2. Elisabetta Allevi

    You can also search for this author inPubMed Google Scholar

  3. Marida Bertocchi

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toElisabetta Allevi.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp