Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Adjacent vertex distinguishing edge-colorings of graphs with smaller maximum average degree

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

An adjacent vertex distinguishing edge-coloring of a graphG is a proper edge coloring ofG such that any pair of adjacent vertices are incident to distinct sets of colors. The minimum number of colors required for an adjacent vertex distinguishing edge-coloring ofG is denoted byχa(G). Let\(\mathop{\mathrm{mad}}(G)\) andΔ denote the maximum average degree and the maximum degree of a graphG, respectively.

In this paper, we prove the following results: (1) If\(\mathop{\mathrm{mad}}(G)<3\) andΔ≥3, thenχa(G)≤Δ+2. (2) If\(\mathop{\mathrm{mad}}(G)<\frac{5}{2}\) andΔ≥4, or\(\mathop{\mathrm{mad}}(G)<\frac{7}{3}\) andΔ=3, thenχa(G)≤Δ+1. (3) If\(\mathop{\mathrm{mad}}(G)<\frac{5}{2}\) andΔ≥5, thenχa(G)=Δ+1 if and only ifG contains adjacent vertices of maximum degree.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner M, Triesch E, Tuza Z (1992) Irregular assignments and vertex-distinguishing edge-colorings of graphs. In: Barlotti A et al. (eds) Proceedings of combinatorics ’90. North-Holland, Amsterdam, pp 1–9

    Google Scholar 

  • Akbari S, Bidkhori H, Nosrati N (2006)r-Strong edge colorings of graphs. Discrete Math 306:3005–3010

    Article MATH MathSciNet  Google Scholar 

  • Balister PN, Riordan OM, Schelp RH (2003) Vertex-distinguishing edge colorings of graphs. J Graph Theory 42:95–109

    Article MATH MathSciNet  Google Scholar 

  • Balister PN, Győri E, Lehel J, Schelp RH (2007) Adjacent vertex distinguishing edge-colorings. SIAM J Discrete Math 21:237–250

    Article MATH MathSciNet  Google Scholar 

  • Bu Y, Lih K-W, Wang W (2007) Adjacent vertex distinguishing edge-colorings of planar graphs with girth at least six. Submitted

  • Burris AC, Schelp RH (1997) Vertex-distinguishing proper edge-colorings. J Graph Theory 26:70–82

    MathSciNet  Google Scholar 

  • Favaron O, Li H, Schelp RH (1996) Strong edge colorings of graphs. Discrete Math 159:103–109

    Article MATH MathSciNet  Google Scholar 

  • Hatami H (2005)Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number. J Comb Theory Ser B 95:246–256

    Article MATH MathSciNet  Google Scholar 

  • Montassier M, Raspaud A (2006) (d,1)-Total labeling of graphs with a given maximum average degree. J Graph Theory 51:93–109

    Article MATH MathSciNet  Google Scholar 

  • Vizing VG (1964) On an estimate of the chromatic index of ap-graph. Diskret Anal 3:25–30

    MathSciNet  Google Scholar 

  • Zhang Z, Liu L, Wang J (2002) Adjacent strong edge coloring of graphs. Appl Math Lett 15:623–626

    Article MATH MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, Zhejiang Normal University, Zhejiang, Jinhua, 321004, China

    Weifan Wang & Yiqiao Wang

Authors
  1. Weifan Wang

    You can also search for this author inPubMed Google Scholar

  2. Yiqiao Wang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toWeifan Wang.

Additional information

Research supported partially by NSFC (No. 10771197).

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp