1213Accesses
Abstract
The article focuses on locomotion control of a snake-like robot with cardan joints using a central pattern generator (CPG) approach. A double chain structure of a CPG model is developed based on nonlinear oscillators connected with diffusive couplings. The proposed CPG model has the ability to produce stable rhythmic patterns applied both in the serpentine locomotion and sidewinding locomotion of snake robots. The global exponential stability of the model is also presented using the partial contraction theory. An important point addressed in this paper is that the proposed CPG model has explicit control parameters including not only frequencies of oscillation and amplitudes of oscillation but also phase differences between the neighbor oscillators. The method to adjust the speed and direction of the snake robot during the locomotion is discussed by modulating the control parameters in the proposed CPG model directly. Simulation results together with the experiments on a real snake robot show that the proposed CPG approach can be used to control snake robots successfully.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: A review on modelling, implementation, and control of snake robots. Robot. Auton. Syst.60(1), 29–40 (2012)
Hirose, S., Yamada, H.: Snake-like robots [tutorial]. IEEE Robot. Autom. Mag.16(1), 88–98 (2009)
Rollinson, D., Bilgen, Y., Brown, B., Enner, F., Ford, S., Layton, C., Rembisz, J., Schwerin, M., Willig, A., Velagapudi, P., et al.: Design and architecture of a series elastic snake robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014, pp. 4630–4636, IEEE (2014)
Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R.L., Mendelson, J.R., Choset, H., Hu, D.L., Goldman, D.I.: Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science346(6206), 224–229 (2014)
Nachstedt, T., Worgotter, F., Manoonpong, P., Ariizumi, R., Ambe, Y., Matsuno, F.: Adaptive neural oscillators with synaptic plasticity for locomotion control of a snake-like robot with screw-drive mechanism. In: IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 3389–3395, IEEE (2013)
Liljeback, P., Stavdahl, O., Beitnes, A.: Snakefighter-development of a water hydraulic fire fighting snake robot. In: 9Th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV’06., pp. 1–6, IEEE (2006)
Transeth, A.A., Pettersen, K.Y.: Developments in Snake Robot Modeling and Locomotion. In: 9Th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV’06., pp. 1–8, IEEE (2006)
Vonásek, V., Saska, M., Winkler, L., Přeučil, L.: High-level motion planning for cpg-driven modular robots. Robot. Auton. Syst.68, 116–128 (2015)
Morel, Y., Porez, M., Leonessa, A., Ijspeert, A.J.: Nonlinear motion control of cpg-based movement with applications to a class of swimming robots. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, pp. 6331–6336, IEEE (2011)
Arena, E., Arena, P., Patané, L.: Speed control on a hexapodal robot driven by a cnn-cpg structure. In: Robots and Lattice Automata, pp. 97–116, Springer (2015)
Farzaneh, Y., Akbarzadeh, A., Akbari, A.A.: Online bio-inspired trajectory generation of seven-link biped robot based on t–s fuzzy system. Appl. Soft Comput.14, 167–180 (2014)
Grillner, S.: Biological pattern generation: the cellular and computational logic of networks in motion. Neuron52(5), 751–766 (2006)
Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on cpg-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems25(3), 441–456 (2014)
Nor, N.M., Ma, S.: Smooth transition for cpg-based body shape control of a snake-like robot. Bioinspir. Biomim.9(1), 016003 (2014)
Degallier, S., Righetti, L., Gay, S., Ijspeert, A.: Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives. Auton. Robot.31(2-3), 155–181 (2011)
Morimoto, J., Endo, G., Nakanishi, J., Hyon, S., Cheng, G., Bentivegna, D., Atkeson, C.G.: Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking. In: IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Proceedings 2006, pp. 1579–1584, IEEE (2006)
Seo, K., Chung, S.-J., Slotine, J.-J.E.: Cpg-based control of a turtle-like underwater vehicle. Auton. Robot.28(3), 247–269 (2010)
Chung, S.-J., Dorothy, M.: Neurobiologically inspired control of engineered flapping flight. J. Guid. Control. Dyn.33(2), 440–453 (2010)
Li, C., Lowe, R., Duran, B., Ziemke, T.: Humanoids that crawl: comparing gait performance of icub and nao using a cpg architecture. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2011, vol. 4, pp. 577–582, IEEE (2011)
Ajallooeian, M., Pouya, S., Sproewitz, A., Ijspeert, A.J.: Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion. In: IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 3321–3328, IEEE (2013)
Niu, X., Xu, J., Ren, Q., Wang, Q.: Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Trans. Ind. Electron.61(9), 4780–4787 (2014)
Hu, Y., Liang, J., Wang, T.: Parameter synthesis of coupled nonlinear oscillators for cpg-based robotic locomotion. IEEE Trans. Ind. Electron.61(11), 6183–6191 (2014)
Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw.21(4), 642–653 (2008)
Matsuo, T., Ishii, K.: Development of neural oscillator based motion control system and applied to snake-like robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 3697–3702, IEEE (2007)
Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., Zhang, J.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron.17(5), 847–856 (2012)
Wu, X., Ma, S.: Adaptive creeping locomotion of a cpg-controlled snake-like robot to environment change. Auton. Robot.28(3), 283–294 (2010)
Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science315(5817), 1416–1420 (2007)
Kousuke, I., Takaaki, S., Ma, S.: Cpg-based control of a simulated snake-like robot adaptable to changing ground friction. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1957–1962 (2007)
Chen, W., Ren, G., Zhang, J., Wang, J.: Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. J. Intell. Robot. Syst.67(3-4), 255–270 (2012)
Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.: Amphibot i: an amphibious snake-like robot. Robot. Auton. Syst.50(4), 163–175 (2005)
Crespi, A., Ijspeert, A.J.: Amphibot ii: an amphibious snake robot that crawls and swims using a central pattern generator. In: Proceedings of the 9Th International Conference on Climbing and Walking Robots (CLAWAR 2006), no. BIOROB-CONF-2006-001, pp. 19–27 (2006)
Seo, K., Chung, S.-J., Slotine, J.-J.E.: Cpg-based control of a turtle-like underwater vehicle. Auton. Robot.28(3), 247–269 (2010)
Chung, S.-J., Slotine, J.-J.: On synchronization of coupled hopf-kuramoto oscillators with phase delays. In: 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 3181–3187, IEEE (2010)
Ghigliazza, R.M., Holmes, P.: A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J. Appl. Dyn. Syst.3(4), 671–700 (2004)
Seo, K., Slotine, J.-J.: Models for global synchronization in cpg-based locomotion. In: IEEE International Conference on Robotics and Automation, 2007, pp. 281–286, IEEE (2007)
Pham, Q.-C., Slotine, J.-J.: Stable concurrent synchronization in dynamic system networks. Neural Netw.20(1), 62–77 (2007)
Hirose, S., Mori, M.: Biologically inspired snake-like robots. In: IEEE International Conference on Robotics and Biomimetics, 2004. ROBIO 2004. pp. 1–7, IEEE (2004)
Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K., Hirose, S.: Development of amphibious snake-like robot acm-r5, Proc. ISR2005 (2005)
Gao, W.-S., Cheng, S., Gao, Q.: Pseudo-collision in swarm optimization algorithm and solution – rain forest algorithm. Acta Physica Sinica62(19), 190202 (2013)
Gao, Q., Wang, Z., Li, H.: An optimization algorithm with novel RFA-PSO cooperative evolution: applications to parameter decision of a snake robot.Math. Prob. Eng.2015, 12 pages (2015)
Author information
Authors and Affiliations
School of Control Science and Engineering, Dalian University of Technology, Dalian, China
Zhelong Wang, Qin Gao & Hongyu Zhao
- Zhelong Wang
You can also search for this author inPubMed Google Scholar
- Qin Gao
You can also search for this author inPubMed Google Scholar
- Hongyu Zhao
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toQin Gao.
Rights and permissions
About this article
Cite this article
Wang, Z., Gao, Q. & Zhao, H. CPG-Inspired Locomotion Control for a Snake Robot Basing on Nonlinear Oscillators.J Intell Robot Syst85, 209–227 (2017). https://doi.org/10.1007/s10846-016-0373-9
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative