Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

CPG-Inspired Locomotion Control for a Snake Robot Basing on Nonlinear Oscillators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The article focuses on locomotion control of a snake-like robot with cardan joints using a central pattern generator (CPG) approach. A double chain structure of a CPG model is developed based on nonlinear oscillators connected with diffusive couplings. The proposed CPG model has the ability to produce stable rhythmic patterns applied both in the serpentine locomotion and sidewinding locomotion of snake robots. The global exponential stability of the model is also presented using the partial contraction theory. An important point addressed in this paper is that the proposed CPG model has explicit control parameters including not only frequencies of oscillation and amplitudes of oscillation but also phase differences between the neighbor oscillators. The method to adjust the speed and direction of the snake robot during the locomotion is discussed by modulating the control parameters in the proposed CPG model directly. Simulation results together with the experiments on a real snake robot show that the proposed CPG approach can be used to control snake robots successfully.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Liljebäck, P., Pettersen, K.Y., Stavdahl, Ø., Gravdahl, J.T.: A review on modelling, implementation, and control of snake robots. Robot. Auton. Syst.60(1), 29–40 (2012)

    Article MATH  Google Scholar 

  2. Hirose, S., Yamada, H.: Snake-like robots [tutorial]. IEEE Robot. Autom. Mag.16(1), 88–98 (2009)

    Article  Google Scholar 

  3. Rollinson, D., Bilgen, Y., Brown, B., Enner, F., Ford, S., Layton, C., Rembisz, J., Schwerin, M., Willig, A., Velagapudi, P., et al.: Design and architecture of a series elastic snake robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), 2014, pp. 4630–4636, IEEE (2014)

  4. Marvi, H., Gong, C., Gravish, N., Astley, H., Travers, M., Hatton, R.L., Mendelson, J.R., Choset, H., Hu, D.L., Goldman, D.I.: Sidewinding with minimal slip: Snake and robot ascent of sandy slopes. Science346(6206), 224–229 (2014)

    Article  Google Scholar 

  5. Nachstedt, T., Worgotter, F., Manoonpong, P., Ariizumi, R., Ambe, Y., Matsuno, F.: Adaptive neural oscillators with synaptic plasticity for locomotion control of a snake-like robot with screw-drive mechanism. In: IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 3389–3395, IEEE (2013)

  6. Liljeback, P., Stavdahl, O., Beitnes, A.: Snakefighter-development of a water hydraulic fire fighting snake robot. In: 9Th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV’06., pp. 1–6, IEEE (2006)

  7. Transeth, A.A., Pettersen, K.Y.: Developments in Snake Robot Modeling and Locomotion. In: 9Th International Conference on Control, Automation, Robotics and Vision, 2006. ICARCV’06., pp. 1–8, IEEE (2006)

  8. Vonásek, V., Saska, M., Winkler, L., Přeučil, L.: High-level motion planning for cpg-driven modular robots. Robot. Auton. Syst.68, 116–128 (2015)

    Article  Google Scholar 

  9. Morel, Y., Porez, M., Leonessa, A., Ijspeert, A.J.: Nonlinear motion control of cpg-based movement with applications to a class of swimming robots. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), 2011, pp. 6331–6336, IEEE (2011)

  10. Arena, E., Arena, P., Patané, L.: Speed control on a hexapodal robot driven by a cnn-cpg structure. In: Robots and Lattice Automata, pp. 97–116, Springer (2015)

  11. Farzaneh, Y., Akbarzadeh, A., Akbari, A.A.: Online bio-inspired trajectory generation of seven-link biped robot based on t–s fuzzy system. Appl. Soft Comput.14, 167–180 (2014)

    Article  Google Scholar 

  12. Grillner, S.: Biological pattern generation: the cellular and computational logic of networks in motion. Neuron52(5), 751–766 (2006)

    Article  Google Scholar 

  13. Yu, J., Tan, M., Chen, J., Zhang, J.: A survey on cpg-inspired control models and system implementation. IEEE Transactions on Neural Networks and Learning Systems25(3), 441–456 (2014)

    Article  Google Scholar 

  14. Nor, N.M., Ma, S.: Smooth transition for cpg-based body shape control of a snake-like robot. Bioinspir. Biomim.9(1), 016003 (2014)

    Article  Google Scholar 

  15. Degallier, S., Righetti, L., Gay, S., Ijspeert, A.: Toward simple control for complex, autonomous robotic applications: combining discrete and rhythmic motor primitives. Auton. Robot.31(2-3), 155–181 (2011)

    Article  Google Scholar 

  16. Morimoto, J., Endo, G., Nakanishi, J., Hyon, S., Cheng, G., Bentivegna, D., Atkeson, C.G.: Modulation of simple sinusoidal patterns by a coupled oscillator model for biped walking. In: IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. Proceedings 2006, pp. 1579–1584, IEEE (2006)

  17. Seo, K., Chung, S.-J., Slotine, J.-J.E.: Cpg-based control of a turtle-like underwater vehicle. Auton. Robot.28(3), 247–269 (2010)

    Article  Google Scholar 

  18. Chung, S.-J., Dorothy, M.: Neurobiologically inspired control of engineered flapping flight. J. Guid. Control. Dyn.33(2), 440–453 (2010)

    Article  Google Scholar 

  19. Li, C., Lowe, R., Duran, B., Ziemke, T.: Humanoids that crawl: comparing gait performance of icub and nao using a cpg architecture. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE), 2011, vol. 4, pp. 577–582, IEEE (2011)

  20. Ajallooeian, M., Pouya, S., Sproewitz, A., Ijspeert, A.J.: Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion. In: IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 3321–3328, IEEE (2013)

  21. Niu, X., Xu, J., Ren, Q., Wang, Q.: Locomotion learning for an anguilliform robotic fish using central pattern generator approach. IEEE Trans. Ind. Electron.61(9), 4780–4787 (2014)

    Article  Google Scholar 

  22. Hu, Y., Liang, J., Wang, T.: Parameter synthesis of coupled nonlinear oscillators for cpg-based robotic locomotion. IEEE Trans. Ind. Electron.61(11), 6183–6191 (2014)

    Article  Google Scholar 

  23. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw.21(4), 642–653 (2008)

    Article  Google Scholar 

  24. Matsuo, T., Ishii, K.: Development of neural oscillator based motion control system and applied to snake-like robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 3697–3702, IEEE (2007)

  25. Yu, J., Ding, R., Yang, Q., Tan, M., Wang, W., Zhang, J.: On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mechatron.17(5), 847–856 (2012)

    Article  Google Scholar 

  26. Wu, X., Ma, S.: Adaptive creeping locomotion of a cpg-controlled snake-like robot to environment change. Auton. Robot.28(3), 283–294 (2010)

    Article  Google Scholar 

  27. Ijspeert, A.J., Crespi, A., Ryczko, D., Cabelguen, J.-M.: From swimming to walking with a salamander robot driven by a spinal cord model. Science315(5817), 1416–1420 (2007)

    Article  Google Scholar 

  28. Kousuke, I., Takaaki, S., Ma, S.: Cpg-based control of a simulated snake-like robot adaptable to changing ground friction. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1957–1962 (2007)

  29. Chen, W., Ren, G., Zhang, J., Wang, J.: Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. J. Intell. Robot. Syst.67(3-4), 255–270 (2012)

    Article MATH  Google Scholar 

  30. Crespi, A., Badertscher, A., Guignard, A., Ijspeert, A.: Amphibot i: an amphibious snake-like robot. Robot. Auton. Syst.50(4), 163–175 (2005)

    Article  Google Scholar 

  31. Crespi, A., Ijspeert, A.J.: Amphibot ii: an amphibious snake robot that crawls and swims using a central pattern generator. In: Proceedings of the 9Th International Conference on Climbing and Walking Robots (CLAWAR 2006), no. BIOROB-CONF-2006-001, pp. 19–27 (2006)

  32. Seo, K., Chung, S.-J., Slotine, J.-J.E.: Cpg-based control of a turtle-like underwater vehicle. Auton. Robot.28(3), 247–269 (2010)

    Article  Google Scholar 

  33. Chung, S.-J., Slotine, J.-J.: On synchronization of coupled hopf-kuramoto oscillators with phase delays. In: 49th IEEE Conference on Decision and Control (CDC), 2010, pp. 3181–3187, IEEE (2010)

  34. Ghigliazza, R.M., Holmes, P.: A minimal model of a central pattern generator and motoneurons for insect locomotion. SIAM J. Appl. Dyn. Syst.3(4), 671–700 (2004)

    Article MathSciNet MATH  Google Scholar 

  35. Seo, K., Slotine, J.-J.: Models for global synchronization in cpg-based locomotion. In: IEEE International Conference on Robotics and Automation, 2007, pp. 281–286, IEEE (2007)

  36. Pham, Q.-C., Slotine, J.-J.: Stable concurrent synchronization in dynamic system networks. Neural Netw.20(1), 62–77 (2007)

    Article MATH  Google Scholar 

  37. Hirose, S., Mori, M.: Biologically inspired snake-like robots. In: IEEE International Conference on Robotics and Biomimetics, 2004. ROBIO 2004. pp. 1–7, IEEE (2004)

  38. Yamada, H., Chigisaki, S., Mori, M., Takita, K., Ogami, K., Hirose, S.: Development of amphibious snake-like robot acm-r5, Proc. ISR2005 (2005)

  39. Gao, W.-S., Cheng, S., Gao, Q.: Pseudo-collision in swarm optimization algorithm and solution – rain forest algorithm. Acta Physica Sinica62(19), 190202 (2013)

  40. Gao, Q., Wang, Z., Li, H.: An optimization algorithm with novel RFA-PSO cooperative evolution: applications to parameter decision of a snake robot.Math. Prob. Eng.2015, 12 pages (2015)

Download references

Author information

Authors and Affiliations

  1. School of Control Science and Engineering, Dalian University of Technology, Dalian, China

    Zhelong Wang, Qin Gao & Hongyu Zhao

Authors
  1. Zhelong Wang

    You can also search for this author inPubMed Google Scholar

  2. Qin Gao

    You can also search for this author inPubMed Google Scholar

  3. Hongyu Zhao

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toQin Gao.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Gao, Q. & Zhao, H. CPG-Inspired Locomotion Control for a Snake Robot Basing on Nonlinear Oscillators.J Intell Robot Syst85, 209–227 (2017). https://doi.org/10.1007/s10846-016-0373-9

Download citation

Keywords

Mathematics Subject Classification (2010)

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp