Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The teaching-learning-based optimization (TLBO) algorithm, one of the recently proposed population-based algorithms, simulates the teaching-learning process in the classroom. This study proposes an improved TLBO (ITLBO), in which a feedback phase, mutation crossover operation of differential evolution (DE) algorithms, and chaotic perturbation mechanism are incorporated to significantly improve the performance of the algorithm. The feedback phase is used to enhance the learning style of the students and to promote the exploration capacity of the TLBO. The mutation crossover operation of DE is introduced to increase population diversity and to prevent premature convergence. The chaotic perturbation mechanism is used to ensure that the algorithm can escape the local optimal. Simulation results based on ten unconstrained benchmark problems and five constrained engineering design problems show that the ITLBO algorithm is better than, or at least comparable to, other state-of-the-art algorithms.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akay, B., & Karaboga, D. (2012). Artificial bee colony algorithm for large-scale problems and engineering design optimization.Journal of Intelligent Manufacturing,23(4), 1001–1014.

    Article  Google Scholar 

  • Alatas, B. (2010). Chaotic bee colony algorithms for global numerical optimization.Expert Systems with Applications,37(8), 5682–5687.

    Article  Google Scholar 

  • Amiri, B. (2012). Application of teaching-learning-based optimization algorithm on cluster analysis.Journal of Basic and Applied Scientific Research.,2(11), 11795–11802.

    Google Scholar 

  • Baykasoğlu, A., Hamzadayi, A., & Köse, S. Y. (2014). Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases.Information Sciences. doi:10.1016/j.ins.2014.02.056.

  • Brajevic, I., & Tuba, M. (2013). An upgrade artificial bee colony algorithm for constrained optimization problems.Journal of Intelligent Manufacturing,24(4), 729–740.

    Article  Google Scholar 

  • Coelho, L. D. S., Bora, T. C., & Lebensztajn, L. (2012). A chaotic approach of differential evolution optimization applied to loudspeaker design problem.IEEE Transactions on Magnetics,48(2), 751–754.

    Article  Google Scholar 

  • Črepinšek, M., Liu, S. H., & Mernik, L. (2012). A note on teaching-learning-based optimization algorithm. Information Sciences,212, 79–93.

  • Črepinšek, M., Liu, S. H., & Mernik, M. (2014). Replication and comparison of computational experiments in applied evolutionary computing: Common pitfalls and guidelines to avoid them.Applied Soft Computing,19, 161–170.

    Article  Google Scholar 

  • Deb, K. (2000). An efficient constraint handling method for genetic algorithms.Computer Methods in Applied Mechanics and Engineering,186(2–4), 311–338.

    Article  Google Scholar 

  • Dolgui, A., & Ofitserov, D. (1997). A stochastic method for discrete and continuous optimization in manufacturing systems.Journal of Intelligent Manufacturing,8(5), 405–413.

    Article  Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1991). Positive feedback as a search strategy. Technical Report 91–016, Italy: Politecnico di Milano.

  • Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: harmony search.Simulation,76(2), 60–70.

    Article  Google Scholar 

  • He, Q., & Wang, L. (2007a). A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization.Applied Mathematics & Computation,186(2), 1407–1422.

    Article  Google Scholar 

  • He, Q., & Wang, L. (2007b). An effective co-evolutionary particle swarm optimization for constrained engineering design problems.Engineering Application of Artificial Intelligence,20(1), 89–99.

    Article  Google Scholar 

  • He, S., Wu, Q. H., & Saunders, J. R. (2009). Group search optimizer: An optimization algorithm inspired by animal searching behavior.IEEE Transactions on Evolutionary Computation,13(5), 973–990.

    Article  Google Scholar 

  • Holland, J. H. (1975).Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press.

    Google Scholar 

  • Huang, F. Z., Wang, L., & He, Q. (2007). An effective co-evolutionary differential evolution for constrained optimization.Applied Mathematics & Computation,186(1), 340–356.

    Article  Google Scholar 

  • Karaboga, D. (2005). An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, Voi 200

  • Karaboga, D., & Akay, B. (2009).Artificial bee colony (ABC), harmony search and bees algorithms on numerical optimization, Proceeding of IPROMS-2009 on Innovative Production Machines and Systems. UK: Cardiff.

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. InProceedings of 1995 IEEE International Conference on Neural Networks (pp. 1942-1948). Piscataway, NJ: IEEE Service Center.

  • Li, G. Q., Niu, P. F., & Xiao, X. J. (2012). Development and investigation of efficient artificial bee colony algorithm for numerical function optimization.Applied Soft Computing,12(1), 320–332.

    Article  Google Scholar 

  • Liu, H., Cai, Z. X., & Wang, Y. (2010). Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization.Applied Soft Computing,10(2), 629–640.

    Article  Google Scholar 

  • Meeran, S., & Morshed, M. S. (2012). A hybrid genetic Tabu search algorithm for solving job shop scheduling problems: A case study.Journal of Intelligent Manufacturing,23(4), 1063–1078.

    Article  Google Scholar 

  • Mohamed, A. W., & Sabry, H. Z. (2012). Constrained optimization based on modified differential evolution algorithm.Information Sciences,194, 171–208.

    Article  Google Scholar 

  • Niknam, T., Azizipanah-Abarghooee, R., & Narimani, M. R. (2012a). A new multi objective optimization approach based on TLBO for location of automatic voltage regulators in distribution systems.Engineering Applications of Artificial Intelligence,25(8), 1577– 1588.

    Article  Google Scholar 

  • Niknam, T., Golestaneh, F., & Sadeghi, M. S. (2012b).\(\theta \)-multi-objective teaching-learning-based optimization for dynamic economic emission dispatch.IEEE Systems Journal,6(2), 341–352.

    Article  Google Scholar 

  • Perez, E., Posada, M., & Herrera, F. (2012). Analysis of new niching genetic algorithms for finding multiple solutions in the job shop scheduling.Journal of Intelligent Manufacturing,23(3), 341–356.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2011). Thermodynamic optimization of plate-fin heat exchanger using teaching-learning-based optimization (TLBO) algorithm.The International Journal of Advanced Manufacturing Technology.,2, 91–96.

    Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems.Computer-Aided Design,43(3), 303–315.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2012). An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problem.International Journal of Industrial Engineering Computations,3(4), 535–560.

    Article  Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2012). Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm.Engineering Applications of Artificial,26(1), 524–531.

    Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2012). Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems.Information Sciences,183, 1–15.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2013). An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems.Scientia Iranica,20(3), 710–720.

    Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2013a). Parameter optimization of modern machining processes using teaching-learning-based optimization algorithm.Engineering Applications of Artificial Intelligence,26(1), 524–531.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2013a). Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm.Applied Mathematical Modelling,37(3), 1147–1162.

    Article  Google Scholar 

  • Rao, R. V., & Patel, V. (2013b). Multi-objective optimization of two stage thermoelectric coolers using a modified teaching-learning-based optimization algorithm.Engineering Applications of Artificial Intelligence,26(1), 430–445.

    Article  Google Scholar 

  • Rao, R. V., & Kalyankar, V. D. (2013b). Multi-pass turning process parameter optimization using teaching-learning-based optimization algorithm.Scientia Iranica,20(3), 967–974.

    Google Scholar 

  • Ray, T., & Liew, K. M. (2003). Society and civilization: an optimization algorithm based on the simulation of social behavior.IEEE Transactions on Evolutionary Computation,7(4), 386–396.

    Article  Google Scholar 

  • Roy, P. K., Sur, A., & Pradhan, D. K. (2013). Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization.Engineering Applications of Artificial Intelligence,26(10), 2516–2524.

    Article  Google Scholar 

  • Satapathy, S. C., & Naik, A. (2011). Data clustering based on teaching-learning-based optimization.Swarm, Evolutionary, and Memetic Computing Lecture Notes in Computer Science,7077, 148–156.

    Article  Google Scholar 

  • Satapathy, S. C., & Naik, A. (2014). Modified Teaching-Learning-Based Optimization algorithm for global numerical optimization–A comparative study.Swarm and Evolutionary Computation,16, 28–37.

    Article  Google Scholar 

  • Sauvey, C., & Sauer, N. (2012). A genetic algorithm with genes-association recognition for flowshop scheduling problems.Journal of Intelligent Manufacturing,23(4), 1167–1177.

    Article  Google Scholar 

  • Storn, R., & Price, K. (1997). Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces.Journal of Global Optimization,11(4), 341–359.

    Article  Google Scholar 

  • Togan, V. (2012). Design of planar steel frames using teaching-learning based optimization.Engineering Structures,34, 225–232.

    Article  Google Scholar 

  • Veček, N., Mernik, M., & Črepinšek, M. (2014). A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms.Information Sciences,. doi:10.1016/j.ins.2014.02.154.

    Google Scholar 

  • Waghmare, G. (2013). Comments on “A note on teaching-learning-based optimization algorithm”.Information Sciences,229(20), 159–169.

  • Wang, Y., Cai, Z. X., Zhou, Y. R., & Fan, Z. (2009). Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique.Structural Multidisciplinary Optimization,37(4), 395–413.

    Article  Google Scholar 

  • Yildiz, A. R. (2009a). A novel particle swarm optimization approach for product design and manufacturing.International Journal of Advanced Manufacturing Technology,40(5–6), 617–628.

    Article  Google Scholar 

  • Yildiz, A. R. (2009b). A novel hybrid immune algorithm for global optimization in design and manufacturing.Robotics and Computer-Integrated Manufacturing,25(2), 261–270.

  • Yildiz, A. R. (2009c). Hybrid immune-simulated annealing algorithm for optimal design and manufacturing.International Journal of Materials and Product Technology,34(3), 217–226.

  • Yildiz, A. R. (2009d). An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry.Journal of Materials Processing Technology,50(4), 224–228.

    Google Scholar 

  • Yildiz, A. R., & Saitou, K. (2011). Topology synthesis of multi-component structural assemblies in continuum domains.ASME Journal of Mechanical Design,133(1), 0110081–0110089.

    Article  Google Scholar 

  • Yildiz, A. R., & Solanki, K. N. (2012). Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach.International Journal of Advanced Manufacturing Technology,59(1–4), 367–376.

    Article  Google Scholar 

  • Yildiz, A. R. (2012a). A comparative study of population-based optimization algorithms for turning operations.Information Sciences,210, 81–88.

    Article  Google Scholar 

  • Yildiz, A. R. (2012b). A new hybrid particle swarm optimization approach for structural design optimization in automotive industry.Journal of Automobile Engineering,226(10), 1340–1351.

    Article  Google Scholar 

  • Yildiz, A. R. (2013a). Comparison of evolutionary based optimization algorithms for structural design optimization.Engineering Applications of Artificial Intelligence,26(1), 327–333.

    Article  Google Scholar 

  • Yildiz, A. R. (2013b). Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach.Information Sciences,220, 399–407.

    Article  Google Scholar 

  • Yildiz, A. R. (2013c). A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations.Applied Soft Computing,13(3), 1561–1566.

    Article  Google Scholar 

  • Yildiz, A. R. (2013d). Optimization of multi-pass turning operations using hybrid teaching learning-based approach.International Journal of Advanced Manufacturing Technology,66(9–12), 1319–1326.

    Article  Google Scholar 

  • Zhang, M., Luo, W. J., & Wang, X. F. (2008). Differential evolution with dynamic stochastic selection for constrained optimization.Information Sciences,178(15), 3043–3074.

    Article  Google Scholar 

  • Zou, F., Wang, L., Hei, X. L., Chen, D. B., & Yang, D. D., (2014). Teaching-learning-based optimization with dynamic group strategy for global optimization.Information Sciences,. doi:10.1016/j.ins.2014.03.038.

Download references

Acknowledgments

This research was supported by Major State Basic Research Development Program of China under Grant No. 2012CB720500, National Natural Science Foundation of China under Grant Nos. 61333010, 61222303, Fundamental Research Funds for the Central Universities, National High-Tech Research and Development Program of China under Grant No. 2013AA040701, National Key Scientific and Technical Project of China under Grant No. 2012BAF05B00, Shanghai R&D Platform Construction Program under Grant No. 13DZ2295300, and Open Research Fund of State Key Laboratory of Synthetical Automation for Process Industries.

Author information

Authors and Affiliations

  1. Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai , 200237, China

    Kunjie Yu & Zhenlei Wang

  2. Center of Electrical and Electronic Technology, Shanghai Jiao Tong University, Shanghai , 200240, China

    Xin Wang

Authors
  1. Kunjie Yu

    You can also search for this author inPubMed Google Scholar

  2. Xin Wang

    You can also search for this author inPubMed Google Scholar

  3. Zhenlei Wang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toZhenlei Wang.

Appendix: Constrained engineering design problems

Appendix: Constrained engineering design problems

Problem 1: the welded beam design problem

Minimize:

$$\begin{aligned} f(x)=1.10471x_1^2 x_2 +0.04811x_3 x_4 (14.0+x_2 ) \end{aligned}$$

Subject to:

$$\begin{aligned} g_1 (x)&= \tau (x)-\tau _{\max } \le 0 \\ g_2 (x)&= \sigma (x)-\sigma _{\max } \le 0 \\ g_3 (x)&= x_1 -x_4 \le 0 \\ g_4 (x)&= 0.1047x_1^2 +0.04811x_3 x_4 (14.0+x_2 )-5.0\le 0 \\ g_5 (x)&= 0.125-x_1 \le 0 \\ g_6 (x)&= \delta (x)-\delta _{\max } \le 0 \\ g_7 (x)&= P-P_C (x)\le 0 \end{aligned}$$

where

$$\begin{aligned}&\tau (x)=\sqrt{(\tau ^{{\prime }})^{2}+2\tau ^{{\prime }}\tau ^{{\prime }{\prime }}\frac{x_2 }{2R}+(\tau ^{{\prime }{\prime }})^{2}} \\&\tau ^{{\prime }}=\frac{P}{\sqrt{2}x_1 x_2 },\tau ^{{\prime }{\prime }}=\frac{MR}{J}, M=P\left( L+\frac{x_2 }{2}\right) \\&R=\sqrt{\frac{x_2^2 }{4}+\left( \frac{x_1 +x_3 }{2}\right) ^{2}} \\&J=2\left\{ {\sqrt{2}x_1 x_2 \left[ \frac{x_2^2 }{12}+(\frac{x_1 +x_3 }{2})^{2}\right] } \right\} \\&\sigma (x)=\frac{6PL}{x_4 x_3^2 },\delta (x)=\frac{4PL^{3}}{Ex_3^3 x_4 } \\&P_c (x)=\frac{4.013E\sqrt{\frac{x_3^2 x_4^6 }{36}}}{L^{2}}\left( 1-\frac{x_3 }{2L}\sqrt{\frac{E}{4G}}\right) \\&P=6000\hbox {lb},L=14\hbox {in},E=30e6\hbox {psi},\\&G=12e6\hbox {psi,}\tau _{\max } =13600\hbox {psi}, \\&\sigma _{\max } =30000\hbox {psi,}\delta _{\max } =0.25\hbox {in} \\&0.1 \le x_1 \le 2.0,\quad 0.1\le x_2 \le 10.0 \\&0.1\le x_3 \le 10.0,\quad 0.1\le x_4 \le 2.0 \end{aligned}$$

Problem 2: the tension/compression spring design problem

Minimize:

$$\begin{aligned} f(x)=(x_3 +2)x_2 x_1^2 \end{aligned}$$

Subject to:

$$\begin{aligned} g_1 (x)&= 1-\frac{x_2 ^{3}x_3 }{71785x_1 ^{4}}\le 0 \\ g_2 (x)&= \frac{4x_2 ^{2}-x_1 x_2 }{12566(x_1 ^{3}x_2 -x_1 ^{4})}+\frac{1}{5108x_1 ^{2}}-1\le 0 \\ g_3 (x)&= 1-\frac{140.45x_1 }{x_2 ^{2}x_3 }\le 0 \\ g_4 (x)&= \frac{x_1 +x_2 }{1.5}-1\le 0 \end{aligned}$$

where

$$\begin{aligned} 0.05\le x_1 \le 2,0.25\le x_2 \le 1.3,2\le x_3 \le 15 \end{aligned}$$

Problem 3: the pressure vessel problem

Minimize:

$$\begin{aligned} f(x)&= 0.6224x_1 x_3 x_4 +1.7781x_2 x_3^2\\&\quad +\,3.1661x_1^2 x_4 +19.84x_1^2 x_3 \end{aligned}$$

Subject to:

$$\begin{aligned} g_1 (x)&= -x_1 +0.0193x_3 \le 0 \\ g_2 (x)&= -x_2 +0.00954x_3 \le 0 \\ g_3 (x)&= -\pi x_3^2 x_4 -\frac{4}{3}\pi x_3^3 +1296000\le 0 \\ g_4 (x)&= x_4 -240\le 0 \end{aligned}$$

where

$$\begin{aligned} 1\le x_1 \le 99,1\le x_2 \le 99,10\le x_3 \le 200,10\le x_4 \le 200 \end{aligned}$$

\(x_1 \) and\(x_2 \) are integer multiples of 0.0625.

Problem 4: the speed reducer design problem

Minimize:

$$\begin{aligned} f(x)&= 0.7854x_1 x_2^2 (3.3333x_3^2 +14.9334x_3 -43.0934) \\&\quad -\,1.508x_1 (x_6^2 +x_7^2 )+7.4777(x_6^3 +x_7^3 ) \\&\quad +\,0.7854(x_4 x_6^2 +x_5 x_7^2 ) \end{aligned}$$

Subject to:

$$\begin{aligned} g_1 (x)&= \frac{27}{x_1 x_2^2 x_3 }-1\le 0 \\ g_2 (x)&= \frac{397.5}{x_1 x_2^2 x_3^2 }-1\le 0 \\ g_3 (x)&= \frac{1.93x_4^3 }{x_2 x_3 x_6^4 }-1\le 0 \\ g_4 (x)&= \frac{1.93x_5^3 }{x_2 x_3 x_7^4 }-1\le 0 \\ g_5 (x)&= \frac{\sqrt{(\frac{745x_4 }{x_2 x_3 })^{2}+16.9e6}}{110x_6^3 }-1\le 0 \\ g_6 (x)&= \frac{\sqrt{(\frac{745x_5 }{x_2 x_3 })^{2}+157.5e6}}{85x_7^3 }-1\le 0 \\ g_7 (x)&= \frac{x_2 x_3 }{40}-1\le 0 \\ g_8 (x)&= \frac{5x_2 }{x_1 }-1\le 0 \\ g_9 (x)&= \frac{x_1 }{12x_2 }-1\le 0\\ g_{10} (x)&= \frac{1.56x_6 +1.9}{x_4 }-1\le 0 \\ g_{11} (x)&= \frac{1.1x_7 +1.9}{x_5 }-1\le 0 \end{aligned}$$

where

$$\begin{aligned}&2.6\le x_1 \le 3.6,0.7\le x_2 \le 0.8,17\le x_3 \le 28 \\&7.3\le x_4 \le 8.3,7.3\le x_5 \le 8.3,2.9\le x_6 \le 3.9 \\&5.0\le x_7 \le 5.5 \end{aligned}$$

Problem 5: the three-bar truss design problem

Minimize:

$$\begin{aligned} f(x)=(2\sqrt{2}x_1 +x_2 )l \end{aligned}$$

Subject to:

$$\begin{aligned} g_1 (x)&= \frac{\sqrt{2}x_1 +x_2 }{\sqrt{2}x_1^2 +2x_1 x_2 }p-\sigma \le 0 \\ g_2 (x)&= \frac{x_2 }{\sqrt{2}x_1^2 +2x_1 x_2 }p-\sigma \le 0 \\ g_3 (x)&= \frac{1}{\sqrt{2}x_2 +x_1 }p-\sigma \le 0 \end{aligned}$$

where

$$\begin{aligned}&0\le x_1 \le 1,0\le x_2 \le 1;l=100\hbox {cm, }p=2KN/\hbox {cm}^{2}, \\&\sigma =2 KN/\hbox {cm}^{2} \end{aligned}$$

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, K., Wang, X. & Wang, Z. An improved teaching-learning-based optimization algorithm for numerical and engineering optimization problems.J Intell Manuf27, 831–843 (2016). https://doi.org/10.1007/s10845-014-0918-3

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp