Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Spatiotemporal event sequence discovery without thresholds

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Spatiotemporal event sequences (STESs) are the ordered series of event types whose instances frequently follow each other in time and are located close-by. An STES is a spatiotemporal frequent pattern type, which is discovered from moving region objects whose polygon-based locations continiously evolve over time. Previous studies on STES mining require significance and prevalence thresholds for the discovery, which is usually unknown to domain experts. The quality of the discovered sequences is of great importance to the domain experts who use these algorithms. We introduce a novel algorithm to find the most relevant STESs without threshold values. We tested the relevance and performance of our threshold-free algorithm with a case study on solar event metadata, and compared the results with the previous STES mining algorithms.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahmed N, Michelin RA, Xue W, Ruj S, Malaney R, Kanhere SS, Seneviratne A, Hu W, Janicke H, Jha SK (2020) A survey of COVID-19 contact tracing apps. IEEE Access 8:134577–134601.https://doi.org/10.1109/access.2020.3010226

    Article  Google Scholar 

  2. Archontis V (2012) Magnetic flux emergence and associated dynamic phenomena in the sun. Philos Trans R Soc A: Math Phys Eng Sci 370(1970):3088–3113

    Article  Google Scholar 

  3. Aydin B, Angryk R (2015) Spatiotemporal frequent pattern mining on solar data: current algorithms and future directions. In: 2015 IEEE international conference on data mining workshop (ICDMW).https://doi.org/10.1109/icdmw.2015.10. IEEE

  4. Aydin B, Angryk R (2016) A graph-based approach to spatiotemporal event sequence mining. In: IEEE international conference on data mining workshops, ICDM workshops 2016, Dec. 12–15, 2016, Barcelona, Spain, pp 1090–1097

  5. Aydin B, Angryk R (2016) Spatiotemporal event sequence mining from evolving regions. In: 23rd International conference on pattern recognition, ICPR 2016, Cancun, Mexico, December 4–8, 2016

  6. Aydin B, Akkineni V, Angryk R (2015) Time-efficient significance measure for discovering spatiotemporal co-occurrences from data with unbalanced characteristics. In: Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems, Bellevue, WA, USA, Nov. 3–6, 2015, pp 80:1–80:4

  7. Aydin B, Angryk R, Filali Boubrahimi S, Hamdi S (2016) Spatiotemporal frequent pattern discovery from solar event metadata. In: AGU Fall meeting abstracts

  8. Aydin B, Kucuk A, Angryk RA, Martens PC (2017) Measuring the significance of spatiotemporal co-occurrences. ACM Trans Spat Algorithms Syst (TSAS) 3(3):1–35

    Article  Google Scholar 

  9. Aydin B, Kucuk A, Boubrahimi SF, Angryk RA (2017) Top-(r%, K) spatiotemporal event sequence mining. In: 2017 IEEE international conference on data mining workshops, ICDM Workshops 2017, New Orleans, LA, USA, November 18–21, 2017, pp 250–257.https://doi.org/10.1109/ICDMW.2017.39

  10. Baker DN, Balstad R, Bodeau J, Cameron E, Fennel J, Fisher G, Forbes K, Kintner P, Leffler L, Lewis W et al (2008) Severe space weather events-understanding societal and economic impacts. a workshop report. Tech. rep. The National Acedemies Press

  11. Boubrahimi SF, Aydin B, Kempton D, Angryk RA (2016) Spatio-temporal interpolation methods for solar events metadata. In: 2016 IEEE international conference on big data, BigData 2016, Washington DC, USA, December 5–8, 2016, pp 3149–3157

  12. Brown D, Nightingale R, Alexander D, Schrijver C, Metcalf T, Shine R, Wolfson C et al (2003) Observations of rotating sunspots from trace. Solar Phys 216(1–2):79–108

    Article  Google Scholar 

  13. Campisano R, Borges H, Porto F, Perosi F, Pacitti E, Masseglia F, Ogasawara E (2018) Discovering tight space-time sequences. In: International conference on big data analytics and knowledge discovery. Springer, pp 247–257

  14. Cao H, Mamoulis N, Cheung DW (2005) Mining frequent spatio-temporal sequential patterns. In: Proceedings of the 5th IEEE international conference on data mining (ICDM 2005), 27–30 November 2005, Houston, Texas, USA, pp 82–89

  15. Delafontaine M, Versichele M, Neutens T, Van de Weghe N (2012) Analysing spatiotemporal sequences in bluetooth tracking data. Appl Geogr 34:659–668

  16. Dong G, Pei J (2007) Sequence data mining, vol 33, Kluwer.https://doi.org/10.1007/978-0-387-69937-0

  17. Efron B (1981) Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods. Biometrika 68(3):589–599

    Article  Google Scholar 

  18. Erwig M (2004) Toward spatio-temporal patterns. In: de Caluwe R, de Tré G, Bordogna G (eds) Spatio-temporal databases. Springer, Berlin, pp 29–53.https://doi.org/10.1007/978-3-662-09968-1_3

  19. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, Parker M, Bonsall D, Fraser C (2020) Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 368(6491):eabb6936.https://doi.org/10.1126/science.abb6936

    Article  Google Scholar 

  20. Giannotti F, Nanni M, Pinelli F, Pedreschi D (2007) Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, San Jose, California, USA, August 12–15, 2007, pp 330–339

  21. Harvey KL, Zwaan C (1993) Properties and emergence patterns of bipolar active regions. Solar Phys 148(1):85–118

    Article  Google Scholar 

  22. Howard RF, Sivaraman K, Gupta S (2000) Measurement of kodaikanal white-light images–v. tilt-angle and size variations of sunspot groups. Solar Phys 196(2):333–348

    Article  Google Scholar 

  23. Huang Y, Shekhar S, Xiong H (2004) Discovering colocation patterns from spatial data sets: a general approach. IEEE Trans Knowl Data Eng 16 (12):1472–1485

    Article  Google Scholar 

  24. Huang Y, Zhang L, Zhang P (2008) A framework for mining sequential patterns from spatio-temporal event data sets. IEEE Trans Knowl Data Eng 20 (4):433–448

    Article  Google Scholar 

  25. Jing J, Yurchyshyn VB, Yang G, Xu Y, Wang H (2004) On the relation between filament eruptions, flares, and coronal mass ejections. Astrophys J 614(2):1054–1062.https://doi.org/10.1086/423781

    Article  Google Scholar 

  26. Kempton D, Angryk R (2015) Tracking solar events through iterative refinement. Astron Comput 13:124–135

    Article  Google Scholar 

  27. Krucker S, Benz AO, Bastian TS, Acton LW (1997) X-Ray network flares of the quiet sun. Astrophys J 488:499–505

    Article  Google Scholar 

  28. Langhoff SR, Straume T (2012) Highlights of the space weather risks and society workshop. Space Weather 10(6).https://doi.org/10.1029/2012SW000792

  29. Li Y, Bailey J, Kulik L, Pei J (2013) Mining probabilistic frequent spatio-temporal sequential patterns with gap constraints from uncertain databases. In: 2013 IEEE 13th international conference on data mining, Dallas, TX, USA, December 7–10, 2013, pp 448–457.https://doi.org/10.1109/ICDM.2013.150

  30. Lloyd’s Atmospheric and Environmental Research, Inc. (2013) Solar storm risk to the North American electric grid.https://www.lloyds.com/news-and-risk-insight/risk-reports/library/natural-environment/solar-storm

  31. LMSAL (2016) Heliophysics Event Knowledgebase.http://www.lmsal.com/hek/

  32. Louis RE, Kliem B, Ravindra B, Chintzoglou G (2015) Triggering an eruptive flare by emerging flux in a solar active-region complex. Solar Phys 290(12):3641–3662.https://doi.org/10.1007/s11207-015-0726-8

    Article  Google Scholar 

  33. Martens P, Attrill G, Davey A, Engell A, Farid S et al (2012) Computer vision for the solar dynamics observatory (SDO). In: Chamberlin P, Pesnell WD, Thompson B (eds) The solar dynamics observatory. Springer US, pp 79–113.https://doi.org/10.1007/978-1-4614-3673-7_6

  34. Mohan P, Shekhar S, Shine JA, Rogers JP (2010) Cascading spatio-temporal pattern discovery: a summary of results. In: Proceedings of the 2010 SIAM international conference on data mining. SIAM, pp 327–338

  35. Mohan P, Shekhar S, Shine JA, Rogers JP (2012) Cascading spatio-temporal pattern discovery. IEEE Trans Knowl Data Eng 24(11):1977–1992

    Article  Google Scholar 

  36. Moore RL, Sterling AC, Hudson HS, Lemen JR (2001) Onset of the magnetic explosion in solar flares and coronal mass ejections. Astrophys J 552(2):833–848.https://doi.org/10.1086/320559

    Article  Google Scholar 

  37. Pei J, Han J, Mortazavi-Asl B, Zhu H (2000) Mining access patterns efficiently from web logs. In: Knowledge discovery and data mining, current issues and new applications, 4th Pacific-Asia conference, PADKK 2000, Kyoto, Japan, April 18–20, 2000, Proceedings, pp 396–407

  38. Régnier S, Canfield RC (2006) Evolution of magnetic fields and energetics of flares in active region 8210. Astron Astrophys 451(1):319–330

    Article  Google Scholar 

  39. Riley P (2012) On the probability of occurrence of extreme space weather events. Space Weather 10(2).https://doi.org/10.1029/2011SW000734

  40. Salas HA, Bringay S, Flouvat F, Selmaoui-Folcher N, Teisseire M (2012) The pattern next door: towards spatio-sequential pattern discovery. In: Advances in knowledge discovery and data mining—16th Pacific-Asia conference, PAKDD 2012, Kuala Lumpur, Malaysia, May 29–June 1, 2012, Proceedings, Part II, pp 157–168

  41. Schmieder B, Archontis V, Pariat E (2014) Magnetic flux emergence along the solar cycle. Space Sci Rev 186(1-4):227–250

    Article  Google Scholar 

  42. Shekhar S, Jiang Z, Ali RY, Eftelioglu E, Tang X, Gunturi V, Zhou X (2015) Spatiotemporal data mining: a computational perspective. ISPRS Int J Geo-Inf 4(4):2306–2338

    Article  Google Scholar 

  43. Solanki SK (2003) Sunspots: an overview. Astron Astrophys Rev 11(2-3):153–286

    Article  Google Scholar 

  44. Srikant R, Agrawal R (1996) Mining sequential patterns: Generalizations and performance improvements. In: Advances in database technology—EDBT’96, 5th International conference on extending database technology, Avignon, France, March 25–29, 1996, Proceedings, pp 3–17

  45. Tian L, Alexander D (2006) Role of sunspot and sunspot-group rotation in driving sigmoidal active region eruptions. Solar Phys 233(1):29–43

    Article  Google Scholar 

  46. van Driel-Gesztelyi L, Green LM (2015) Evolution of active regions. Living Rev Solar Phys 12(1):1

    Article  Google Scholar 

  47. Verhein F (2009) Mining complex spatio-temporal sequence patterns. In: Proceedings of the SIAM international conference on data mining, SDM 2009, April 30–May 2, 2009, Sparks, Nevada, USA, pp 605–616

  48. Vorpahl JA (1973) Flares associated with EFR’s (emerging flux regions). Solar Phys 28(1):115–122

    Article  Google Scholar 

  49. Xue C, Liu J, Li X, Dong Q (2016) Normalized-mutual-information-based mining method for cascading patterns. ISPRS Int J Geo-Inf 5(10):174

    Article  Google Scholar 

  50. Zaki MJ (2001) SPADE: an efficient algorithm for mining frequent sequences. Mach Learn 42(1/2):31–60

    Article  Google Scholar 

  51. Zhang C, Han J, Shou L, Lu J, Porta TFL (2014) Splitter: mining fine-grained sequential patterns in semantic trajectories. PVLDB 7(9):769–780

    Google Scholar 

  52. Zhao Y, Zhang H, Cao L, Bohlscheid H, Ou Y, Zhang C (2009) Data mining applications in social security. In: Data mining for business applications. Springer, pp 81–96

  53. Zhao L, Chen F, Lu C, Ramakrishnan N (2015) Spatiotemporal event forecasting in social media. In: Proceedings of the 2015 SIAM international conference on data mining, Vancouver, BC, Canada, April 30–May 2, 2015, pp 963–971

Download references

Acknowledgements

This project has been supported in part by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061. It was also supported in part by funding from the Heliophysics Living With a Star Science Program, under NASA award #NNX15AF39G.

Author information

Authors and Affiliations

  1. Georgia State University, Atlanta, GA, USA

    Berkay Aydin, Soukaina Filali Boubrahimi, Ahmet Kucuk, Bita Nezamdoust & Rafal A. Angryk

Authors
  1. Berkay Aydin

    You can also search for this author inPubMed Google Scholar

  2. Soukaina Filali Boubrahimi

    You can also search for this author inPubMed Google Scholar

  3. Ahmet Kucuk

    You can also search for this author inPubMed Google Scholar

  4. Bita Nezamdoust

    You can also search for this author inPubMed Google Scholar

  5. Rafal A. Angryk

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toBerkay Aydin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Comparisons of pi values for Rand-ESMiner and EsGrowth

Appendix: Comparisons ofpi values forRand-ESMiner andEsGrowth

1.1A.1 Size-2 STESs

Fig. 8
figure 8

Mixed plots ofpi values fromRand-ESMiner andESGrowth algorithms for top-15 length-2 STES from all the datasets. Distributions ofpi values fromRand-ESMiner are shown as boxplots, whilepi values (discovered usingESGrowth) with different thresholds are shown

1.2A.2 Size-3 STESs

Fig. 9
figure 9

Mixed plots ofpi values fromRand-ESMiner andESGrowth algorithms for top-15 length-3 STES from all the datasets. Distributions ofpi values fromRand-ESMiner are shown as boxplots, whilepi values (discovered usingESGrowth) with different thresholds are shown

1.3A.3 Size-4 STESs

Fig. 10
figure 10

Mixed plots ofpi values fromRand-ESMiner andESGrowth algorithms for top-15 length-4 STES from all the datasets. Distributions ofpi values fromRand-ESMiner are shown as boxplots, whilepi values (discovered usingESGrowth) with different thresholds are shown

1.4A.4 Number of top-15 occurrences for length-3 and length-4 STESs

Fig. 11
figure 11

Number of top-15 occurrences for length-3 STESs, discovered usingRand-ESMiner from twelve monthly datasets

Fig. 12
figure 12

Number of top-15 occurrences for length-4 STESs, discovered usingRand-ESMiner from twelve monthly datasets

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydin, B., Boubrahimi, S.F., Kucuk, A.et al. Spatiotemporal event sequence discovery without thresholds.Geoinformatica25, 149–177 (2021). https://doi.org/10.1007/s10707-020-00427-6

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp