Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Variants of Jacobi polynomials in coding theory

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of the complete joint Jacobi polynomial of two linear codes of length n over\({\mathbb {F}}_{q}\) and\({\mathbb {Z}}_{k}\). We give the MacWilliams type identity for the complete joint Jacobi polynomials of codes. We also introduce the concepts of the average Jacobi polynomial and the average complete joint Jacobi polynomial over\({\mathbb {F}}_{q}\) and\({\mathbb {Z}}_{k}\). We give a representation of the average of the complete joint Jacobi polynomials of two linear codes of length n over\({\mathbb {F}}_{q}\) and\({\mathbb {Z}}_{k}\) in terms of the compositions of n and its distribution in the codes. Further we present a generalization of the representation for the average of the\((g+1)\)-fold complete joint Jacobi polynomials of codes over \({\mathbb {F}}_{q}\) and\({\mathbb {Z}}_{k}\). Finally, we give the notion of the average Jacobi intersection number of two codes.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonnecaze A., Mourrain B., Solé P.: Jacobi polynomials, Type II codes, and designs. Des. Codes Cryptogr.16, 215–234 (1999).

    Article MathSciNet MATH  Google Scholar 

  2. Chakraborty H.S., Miezaki T.: Average complete joint weight enumerators and self-dual codes. Des. Codes Cryptogr.89(6), 1241–1254 (2021).

    Article MathSciNet MATH  Google Scholar 

  3. Chakraborty H.S., Miezaki T., Oura M.: On the cycle index and the weight enumerator II, submitted.

  4. Dougherty S.T.: Algebraic Coding Theory Over Finite Commutative Rings. SpringerBriefs in Mathematics. Springer, Cham (2017).

    Book MATH  Google Scholar 

  5. Dougherty S.T., Harada M., Oura M.: Note on the\(g\)-fold joint weight enumerators of self-dual codes over\({\mathbb{Z}}_k\). Appl. Algebra Eng. Commun. Comput.11, 437–445 (2001).

    Article MATH  Google Scholar 

  6. Honma K., Okabe T., Oura M.: Weight enumerator, intersection enumerator and Jacobi polynomial. Discret. Math.343(6), 111815 (2020).

    Article MathSciNet MATH  Google Scholar 

  7. MacWilliams F.J., Mallows C.L., Sloane N.J.A.: Generalizations of Gleason’s theorem on weight enumerators of self-dual codes. IEEE Trans. Inf. Theory18, 794–805 (1972).

    Article MathSciNet MATH  Google Scholar 

  8. Miezaki T., Oura M.: On the cycle index and the weight enumerator. Des. Codes Cryptogr.87(6), 1237–1242 (2019).

    Article MathSciNet MATH  Google Scholar 

  9. Ozeki M.: On the notion of Jacobi polynomials for codes. Math. Proc. Camb. Philos. Soc.121(1), 15–30 (1997).

    Article MathSciNet MATH  Google Scholar 

  10. Yoshida T.: The average of joint weight enumerators. Hokkaido Math. J.18, 217–222 (1989).

    Article MathSciNet MATH  Google Scholar 

  11. Yoshida T.: The average intersection number of a pair of self-dual codes. Hokkaido Math. J.20, 539–548 (1991).

    Article MathSciNet MATH  Google Scholar 

Download references

Acknowledgements

The authors thank Manabu Oura for helpful discussions. The authors would also like to thank the anonymous reviewers for their beneficial comments on an earlier version of the manuscript. The second named author is supported by JSPS KAKENHI (18K03217).

Author information

Authors and Affiliations

  1. Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, 920-1192, Japan

    Himadri Shekhar Chakraborty

  2. Department of Mathematics, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh

    Himadri Shekhar Chakraborty

  3. Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan

    Tsuyoshi Miezaki

Authors
  1. Himadri Shekhar Chakraborty

    You can also search for this author inPubMed Google Scholar

  2. Tsuyoshi Miezaki

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toHimadri Shekhar Chakraborty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published inDesigns, Codes and Cryptography comprising the “Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless”

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, H.S., Miezaki, T. Variants of Jacobi polynomials in coding theory.Des. Codes Cryptogr.90, 2583–2597 (2022). https://doi.org/10.1007/s10623-021-00923-2

Download citation

Keywords

Mathematics Subject Classification

Associated Content

Part of a collection:

Special Issue: On Coding Theory and Combinatorics: In Memory of Vera Pless

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp